Do you want to publish a course? Click here

On phase segregation in nonlocal two-particle Hartree systems

285   0   0.0 ( 0 )
 Added by Marco Squassina
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We prove the phase segregation phenomenon to occur in the ground state solutions of an interacting system of two self-coupled repulsive Hartree equations for large nonlinear and nonlocal interactions. A self-consistent numerical investigation visualizes the approach to this segregated regime.



rate research

Read More

We consider a diffuse interface model which describes the motion of an incompressible isothermal mixture of two immiscible fluids. This model consists of the Navier-Stokes equations coupled with a convective nonlocal Cahn-Hilliard equation. Several results were already proven by two of the present authors. However, in the two-dimensional case, the uniqueness of weak solutions was still open. Here we establish such a result even in the case of degenerate mobility and singular potential. Moreover, we show the strong-weak uniqueness in the case of viscosity depending on the order parameter, provided that either the mobility is constant and the potential is regular or the mobility is degenerate and the potential is singular. In the case of constant viscosity, on account of the uniqueness results we can deduce the connectedness of the global attractor whose existence was obtained in a previous paper. The uniqueness technique can be adapted to show the validity of a smoothing property for the difference of two trajectories which is crucial to establish the existence of an exponential attractor. The latter is established even in the case of variable viscosity, constant mobility and regular potential.
We consider a phase-field model where the internal energy depends on the order parameter in a nonlocal way. Therefore, the resulting system consists of the energy balance equation coupled with a nonlinear and nonlocal ODE for the order parameter. Such system has been analyzed by several authors, in particular when the configuration potential is a smooth double-well function. More recently, in the case of a potential defined on (-1,1) and singular at the endpoints, the existence of a finite-dimensional global attractor has been proven. Here we examine both the case of smooth potentials as well as the case of physically realistic (e.g., logarithmic) singular potentials. We prove well-posedness results and the eventual global boundedness of solutions uniformly with respect to the initial data. In addition, we show that the separation property holds in the case of singular potentials. Thanks to these results, we are able to demonstrate the existence of a finite-dimensional attractors in the present cases as well.
We study a class of free boundary systems with nonlocal diffusion, which are natural extensions of the corresponding free boundary problems of reaction diffusion systems. As before the free boundary represents the spreading front of the species, but here the population dispersal is described by nonlocal diffusion instead of local diffusion. We prove that such a nonlocal diffusion problem with free boundary has a unique global solution, and for models with Lotka-Volterra type competition or predator-prey growth terms, we show that a spreading-vanishing dichotomy holds, and obtain criteria for spreading and vanishing; moreover, for the weak competition case and for the weak predation case, we can determine the long-time asymptotic limit of the solution when spreading happens. Compared with the single species free boundary model with nonlocal diffusion considered recently in cite{CDLL}, and the two species cases with local diffusion extensively studied in the literature, the situation considered in this paper involves several extra difficulties, which are overcome by the use of some new techniques.
219 - K. Mitra , , C.J. van Duijn 2020
We study the gravity-driven flow of two fluid phases in a one-dimensional homogeneous porous column when history dependence of the pressure difference between the phases (capillary pressure) is taken into account. In the hyperbolic limit, solutions of such systems satisfy the Buckley-Leverett equation with a non-monotone flux function. However, solutions for the hysteretic case do not converge to the classical solutions in the hyperbolic limit in a wide range of situations. In particular, with Riemann data as initial condition, stationary shocks become possible in addition to classical components such as shocks, rarefaction waves, and constant states. We derive an admissibility criterion for the stationary shocks and outline all admissible shocks. Depending on the capillary pressure functions, flux function, and the Riemann data, two cases are identified a priori for which the solution consists of a stationary shock. In the first case, the shock remains at the point where the initial condition is discontinuous. In the second case, the solution is frozen in time in at least one semi-infinite half. The predictions are verified using numerical results.
A well-known diffuse interface model for incompressible isothermal mixtures of two immiscible fluids consists of the Navier-Stokes system coupled with a convective Cahn-Hilliard equation. In some recent contributions the standard Cahn-Hilliard equation has been replaced by its nonlocal version. The corresponding system is physically more relevant and mathematically more challenging. Indeed, the only known results are essentially the existence of a global weak solution and the existence of a suitable notion of global attractor for the corresponding dynamical system defined without uniqueness. In fact, even in the two-dimensional case, uniqueness of weak solutions is still an open problem. Here we take a step forward in the case of regular potentials. First we prove the existence of a (unique) strong solution in two dimensions. Then we show that any weak solution regularizes in finite time uniformly with respect to bounded sets of initial data. This result allows us to deduce that the global attractor is the union of all the bounded complete trajectories which are strong solutions. We also demonstrate that each trajectory converges to a single equilibrium, provided that the potential is real analytic and the external forces vanish.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا