Based on a sample of 355 quasars with significant optical polarization, we found that quasar polarization vectors are not randomly oriented over the sky as naturally expected. The probability that the observed distribution of polarization angles is due to chance is lower than 0.1%. The polarization vectors of the light from quasars are aligned although the sources span huge regions of the sky (~ 1 Gpc). Groups of quasars located along similar lines of sight but at different redshifts (typically z ~ 0.5 and z ~ 1.5) are characterized by different preferred directions of polarization. These characteristics make the observed alignment effect difficult to explain in terms of a local contamination by interstellar polarization in our Galaxy. Interpreted in terms of a cosmological-size effect, we show that the dichroism and birefringence predicted by a mixing between photons and very light pseudoscalar particles within a magnetic field can qualitatively reproduce the observations. We find that circular polarization measurements could help constrain this mechanism.
We investigate the effects of pseudoscalar-photon mixing on electromagnetic radiation in the presence of correlated extragalactic magnetic fields. We model the Universe as a collection of magnetic domains and study the propagation of radiation through them. This leads to correlations between Stokes parameters over large scales and consistently explains the observed large-scale alignment of quasar polarizations at different redshifts within the framework of the big bang model.
We find evidence for large-scale clustering amongst Fermi-selected BL Lac objects but not amongst Fermi-selected FSRQs. Using two-point correlation functions we have investigated the clustering properties of different classes of objects from the Fermi LAT 4FGL catalogue. We wanted to test the idea based on optical polarization observations that there might be large volumes of space in which AGN axes are aligned. To do this we needed a clean sample of blazars as these are objects with their jet axes pointing towards the observer and Fermi sources provide such a sample. We find that high latitude Fermi sources taken as a whole show a significant clustering signal on scales up to 30 degrees. To investigate if all blazars behave in the same way we used the machine learning classifications of Kovacevic, et al. (2020), which are based only on gamma-ray information, to separate BL Lac-like objects from FSRQ-like objects. A possible explanation for the clustering signal we find amongst the BL Lac-like objects is that there are indeed large volumes of space in which AGN axes are aligned. This signal might be washed out in FSRQs since they occupy a much larger volume of space. Thus our results support the idea that large scale polarization alignments could originate from coherent alignments of AGN axes. We speculate that these axis alignments may be related to the well-known intrinsic alignments of galaxy optical position angles.
Cosmological data provide a powerful tool in the search for physics beyond the Standard Model (SM). An interesting target are light relics, new degrees of freedom which decoupled from the SM while relativistic. Nearly massless relics contribute to the radiation energy budget, and are commonly parametrized as variations in the effective number $N_{rm eff}$ of neutrino species. Additionally, relics with masses greater than $10^{-4}$ eV become non-relativistic before today, and thus behave as matter instead of radiation. This leaves an imprint in the clustering of the large-scale structure of the universe, as light relics have important streaming motions, mirroring the case of massive neutrinos. Here we forecast how well current and upcoming cosmological surveys can probe light massive relics (LiMRs). We consider minimal extensions to the SM by both fermionic and bosonic relic degrees of freedom. By combining current and upcoming cosmic-microwave-background and large-scale-structure surveys, we forecast the significance at which each LiMR, with different masses and temperatures, can be detected. We find that a very large coverage of parameter space will be attainable by upcoming experiments, opening the possibility of exploring uncharted territory for new physics beyond the SM.
We present the most precise estimate to date of the clustering of quasars on very small scales, based on a sample of 47 binary quasars with magnitudes of $g<20.85$ and proper transverse separations of $sim 25,h^{-1}$,kpc. Our sample of binary quasars, which is about 6 times larger than any previous spectroscopically confirmed sample on these scales, is targeted using a Kernel Density Estimation technique (KDE) applied to Sloan Digital Sky Survey (SDSS) imaging over most of the SDSS area. Our sample is complete in that all of the KDE target pairs with $17.0 lesssim R lesssim 36.2,h^{-1}$,kpc in our area of interest have been spectroscopically confirmed from a combination of previous surveys and our own long-slit observational campaign. We catalogue 230 candidate quasar pairs with angular separations of $<8arcsec$, from which our binary quasars were identified. We determine the projected correlation function of quasars ($bar W_{rm p}$) in four bins of proper transverse scale over the range $17.0 lesssim R lesssim 36.2,h^{-1}$,kpc. The implied small-scale quasar clustering amplitude from the projected correlation function, integrated across our entire redshift range, is $A=24.1pm3.6$ at $sim 26.6 ~h^{-1}$,kpc. Our sample is the first spectroscopically confirmed sample of quasar pairs that is sufficiently large to study how quasar clustering evolves with redshift at $sim 25 ~h^{-1}$ kpc. We find that empirical descriptions of how quasar clustering evolves with redshift at $sim 25 ~h^{-1}$ Mpc also adequately describe the evolution of quasar clustering at $sim 25 ~h^{-1}$ kpc.
Compton scattering of twisted photons is investigated within a non-relativistic framework using first-order perturbation theory. We formulate the problem in the density matrix theory, which enables one to gain new insights into scattering processes of twisted particles by exploiting the symmetries of the system. In particular, we analyze how the angular distribution and polarization of the scattered photons are affected by the parameters of the initial beam such as the opening angle and the projection of orbital angular momentum. We present analytical and numerical results for the angular distribution and the polarization of Compton scattered photons for initially twisted light and compare them with the standard case of plane-wave light.
D. Hutsemekers
,A. Payez
,R. Cabanac
.
(2008)
.
"Large-Scale Alignments of Quasar Polarization Vectors: Evidence at Cosmological Scales for Very Light Pseudoscalar Particles Mixing with Photons?"
.
Damien Hutsemekers
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا