Do you want to publish a course? Click here

Thermodynamic behavior of the XXZ Heisenberg s=1/2 chain around the factorizing magnetic field

306   0   0.0 ( 0 )
 Added by Abdollah Langari
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the zero and finite temperature behaviors of the anisotropic antiferromagnetic Heisenberg XXZ spin-1/2 chain in the presence of a transverse magnetic field (h). The attention is concentrated on an interval of magnetic field between the factorizing field (h_f) and the critical one (h_c). The model presents a spin-flop phase for 0<h<h_f with an energy scale which is defined by the long range antiferromagnetic order while it undergoes an entanglement phase transition at h=h_f. The entanglement estimators clearly show that the entanglement is lost exactly at h=h_f which justifies different quantum correlations on both sides of the factorizing field. As a consequence of zero entanglement (at h=h_f) the ground state is known exactly as a product of single particle states which is the starting point for initiating a spin wave theory. The linear spin wave theory is implemented to obtain the specific heat and thermal entanglement of the model in the interested region. A double peak structure is found in the specific heat around h=h_f which manifests the existence of two energy scales in the system as a result of two competing orders before the critical point. These results are confirmed by the low temperature Lanczos data which we have computed.



rate research

Read More

94 - N. Shibata , K. Ueda 2001
Thermodynamic properties of the S=1/2 Heisenberg chain in transverse staggered magnetic field H^y_s and uniform magnetic field H^x perpendicular to the staggered field is studied by the finite-temperature density-matrix renormalization-group method. The uniform and staggered magnetization and specific heat are calculated from zero temperature to high temperatures up to T/J=4 under various strength of magnetic fields from H^y_s/J, H^x/J=0 to 2.4. The specific heat and magnetization of the effective Hamiltonian of the Yb_4As_3 are also presented, and field induced gap formation and diverging magnetic susceptibility at low temperature are shown.
138 - D. L. Huber 2008
The purpose of this note is to connect early work on thermal transport in spin-1/2 Heisenberg chains with uniaxial exchange anisotropy and nearest-neighbor interactions that was based on a moment analysis of the Fourier transform of the energy density correlation function with subsequent studies that make use of thermal current correlation functions.
We determine dynamical response functions of the S=1/2 Heisenberg quantum antiferromagnet on the kagome lattice based on large-scale exact diagonalizations combined with a continued fraction technique. The dynamical spin structure factor has important spectral weight predominantly along the boundary of the extended Brillouin zone and energy scans reveal broad response extending over a range of 2 sim 3J concomitant with pronounced intensity at lowest available energies. Dispersive features are largely absent. Dynamical singlet correlations -- which are relevant for inelastic light probes -- reveal a similar broad response, with a high intensity at low frequencies omega/J lesssim 0.2J. These low energy singlet excitations do however not seem to favor a specific valence bond crystal, but instead spread over many symmetry allowed eigenstates.
129 - C. Psaroudaki , X. Zotos 2015
We present a temperature and magnetic field dependence study of spin transport and magnetothermal corrections to the thermal conductivity in the spin S = 1/2 integrable easy-plane regime Heisenberg chain, extending an earlier analysis based on the Bethe ansatz method. We critically discuss the low temperature, weak magnetic field behavior, the effect of magnetothermal corrections in the vicinity of the critical field and their role in recent thermal conductivity experiments in 1D quantum magnets.
159 - S. Nellutla , M. Pati , Y.-J. Jo 2009
The magnetic properties of alkali-metal peroxychromate K$_2$NaCrO$_8$ are governed by the $S = 1/2$ pentavalent chromium cation, Cr$^{5+}$. Specific heat, magnetocalorimetry, ac magnetic susceptibility, torque magnetometry, and inelastic neutron scattering data have been acquired over a wide range of temperature, down to 60 mK, and magnetic field, up to 18 T. The magnetic interactions are quasi-two-dimensional prior to long-range ordering, where $T_N = 1.66$ K in $H = 0$. In the $T to 0$ limit, the magnetic field tuned antiferromagnetic-ferromagnetic phase transition suggests a critical field $H_c = 7.270$ T and a critical exponent $alpha = 0.481 pm 0.004$. The neutron data indicate the magnetic interactions may extend over intra-planar nearest-neighbors and inter-planar next-nearest-neighbor spins.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا