We study the Zeeman splitting in induced ballistic 1D quantum wires aligned along the [233] and [011] axes of a high mobility (311)A undoped heterostructure. Our data shows that the g-factor anisotropy for magnetic fields applied along the high symmetry [011] direction can be explained by the 1D confinement only. However when the magnetic field is along [233] there is an interplay between the 1D confinement and 2D crystal anisotropy. This is highlighted for the [233] wire by an unusual non-monotonic behavior of the g-factor as the wire is made narrower.
We have studied the Zeeman splitting in ballistic hole quantum wires formed in a (311)A quantum well by surface gate confinement. Transport measurements clearly show lifting of the spin degeneracy and crossings of the subbands when an in-plane magnetic field B is applied parallel to the wire. When B is oriented perpendicular to the wire, no spin-splitting is discernible up to B = 8.8 T. The observed large Zeeman splitting anisotropy in our hole quantum wires demonstrates the importance of quantum-confinement for spin-splitting in nanostructures with strong spin-orbit coupling.
We have fabricated and studied a ballistic one-dimensional p-type quantum wire using an undoped AlGaAs/GaAs heterostructure. The absence of modulation doping eliminates remote ionized impurity scattering and allows high mobilities to be achieved over a wide range of hole densities, and in particular, at very low densities where carrier-carrier interactions are strongest. The device exhibits clear quantized conductance plateaus with highly stable gate characteristics. These devices provide opportunities for studying spin-orbit coupling and interaction effects in mesoscopic hole systems in the strong interaction regime where rs > 10.
The presence of pronounced electronic correlations in one-dimensional systems strongly enhances Coulomb coupling and is expected to result in distinctive features in the Coulomb drag between them that are absent in the drag between two-dimensional systems. We review recent Fermi and Luttinger liquid theories of Coulomb drag between ballistic one-dimensional electron systems, and give a brief summary of the experimental work reported so far on one-dimensional drag. Both the Fermi liquid (FL) and the Luttinger liquid (LL) theory predict a maximum of the drag resistance R_D when the one-dimensional subbands of the two quantum wires are aligned and the Fermi wave vector k_F is small, and also an exponential decay of R_D with increasing inter-wire separation, both features confirmed by experimental observations. A crucial difference between the two theoretical models emerges in the temperature dependence of the drag effect. Whereas the FL theory predicts a linear temperature dependence, the LL theory promises a rich and varied dependence on temperature depending on the relative magnitudes of the energy and length scales of the systems. At higher temperatures, the drag should show a power-law dependence on temperature, $R_D ~ T^x$, experimentally confirmed in a narrow temperature range, where x is determined by the Luttinger liquid parameters. The spin degree of freedom plays an important role in the LL theory in predicting the features of the drag effect and is crucial for the interpretation of experimental results.
The acoustic phonon-mediated drag-contribution to the drag current created in the ballistic transport regime in a one-dimensional nanowire by phonons generated by a current-carrying ballistic channel in a nearby nanowire is calculated. The threshold of the phonon-mediated drag current with respect to bias or gate voltage is predicted.
We report experimental evidence of ballistic hole transport in one-dimensional quantum wires gate-defined in a strained SiGe/Ge/SiGe quantum well. At zero magnetic field, we observe conductance plateaus at integer multiples of 2e^2/h. At finite magnetic field, the splitting of these plateaus by Zeeman effect reveals largely anisotropic g-factors, with absolute values below 1 in the quantum-well plane, and exceeding 10 out of plane. This g-factor anisotropy is consistent with a heavy-hole character of the propagating valence-band states, in line with a predominant confinement in the growth direction. Remarkably, we observe quantized ballistic conductance in device channels up to 600 nm long. These findings mark an important step towards the realization of novel devices for applications in quantum spintronics.
O. Klochan
,A. P. Micolich
,L. H. Ho
.
(2008)
.
"Interplay between one-dimensional confinement and crystallographic anisotropy in ballistic hole quantum wires"
.
Oleh Klochan
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا