Do you want to publish a course? Click here

Technicolor Walks at the LHC

162   0   0.0 ( 0 )
 Added by Sannino Francesco
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We analyze the potential of the Large Hadron Collider (LHC) to observe signatures of phenomenologically viable Walking Technicolor models. We study and compare the Drell-Yan (DY) and Vector Boson Fusion (VBF) mechanisms for the production of composite heavy vectors. We find that the heavy vectors are most easily produced and detected via the DY processes. The composite Higgs phenomenology is also studied. If Technicolor walks at the LHC its footprints will be visible and our analysis will help uncovering them.



rate research

Read More

In multiscale models of walking technicolor, relatively light color-singlet technipions are produced in $q ol q$ annihilation in association with longitudinal $W$ and $Z$ bosons and with each other. The technipions decay as $tpiz ra b ol b$ and $tpip ra c ol b$. Their production rates are resonantly enhanced by isovector technirho vector mesons with mass $M_W + M_{tpi} simle M_{tro} simle 2 M_{tpi}$. At the Tevatron, these associated production rates are 1--10 picobarns for $M_{tpi} simeq 100,gev$. Such a low mass technipion requires topcolor-assisted technicolor to suppress the decay $t ra tpip b$. Searches for $tpitpi$ production will also be rewarding. Sizable rates are expected if $M_{tro} simge 2M_{tpi} + 10,gev$. The isoscalar $omega_T$ is nearly degenerate with $tro$ and is expected to be produced at roughly the same rate. The $omega_T$ should have the distinctive decay modes $omega_T ra gamma tpiz$ and $Z tpiz$.
In multiscale and topcolor-assisted models of walking technicolor, relatively light spin-one technihadrons $rho_T$ and $omega_T$ exist and are expected to decay as $rho_T to W pi_T, Z pi_T$ and $omega_T to gamma pi_T$. For $M_{rho_T} simeq 200 GeV$ and $M_{pi_T} simeq 100 GeV$, these processes have cross sections in the picobarn range in $bar p p$ colisions at the Tevatron and about 10 times larger at the Large Hadron Collider. We demonstrate their detectability with simulations appropriate to Run II conditions at the Tevatron.
We provide a pedagogical introduction to extensions of the Standard Model in which the Higgs is composite. These extensions are known as models of dynamical electroweak symmetry breaking or, in brief, Technicolor. Material covered includes: motivations for Technicolor, the construction of underlying gauge theories leading to minimal models of Technicolor, the comparison with electroweak precision data, the low energy effective theory, the spectrum of the states common to most of the Technicolor models, the decays of the composite particles and the experimental signals at the Large Hadron Collider. The level of the presentation is aimed at readers familiar with the Standard Model but who have little or no prior exposure to Technicolor. Several extensions of the Standard Model featuring a composite Higgs can be reduced to the effective Lagrangian introduced in the text. We establish the relevant experimental benchmarks for Vanilla, Running, Walking, and Custodial Technicolor, and a natural fourth family of leptons, by laying out the framework to discover these models at the Large Hadron Collider.
156 - M. Cepeda , S. Gori , P. Ilten 2019
The discovery of the Higgs boson in 2012, by the ATLAS and CMS experiments, was a success achieved with only a percent of the entire dataset foreseen for the LHC. It opened a landscape of possibilities in the study of Higgs boson properties, Electroweak Symmetry breaking and the Standard Model in general, as well as new avenues in probing new physics beyond the Standard Model. Six years after the discovery, with a conspicuously larger dataset collected during LHC Run 2 at a 13 TeV centre-of-mass energy, the theory and experimental particle physics communities have started a meticulous exploration of the potential for precision measurements of its properties. This includes studies of Higgs boson production and decays processes, the search for rare decays and production modes, high energy observables, and searches for an extended electroweak symmetry breaking sector. This report summarises the potential reach and opportunities in Higgs physics during the High Luminosity phase of the LHC, with an expected dataset of pp collisions at 14 TeV, corresponding to an integrated luminosity of 3 ab$^{-1}$. These studies are performed in light of the most recent analyses from LHC collaborations and the latest theoretical developments. The potential of an LHC upgrade, colliding protons at a centre-of-mass energy of 27 TeV and producing a dataset corresponding to an integrated luminosity of 15 ab$^{-1}$, is also discussed.
We investigate the possible collider signatures of a new Higgs in simple extensions of the Standard Model where baryon number is a local symmetry spontaneously broken at the low scale. We refer to this new Higgs as Baryonic Higgs. This Higgs has peculiar properties since it can decay into all Standard Model particles, the leptophobic gauge boson, and the vector-like quarks present in these theories to ensure anomaly cancellation. We investigate in detail the constraints from the $gamma gamma$, $Z gamma$, $Z Z$, and $W W$ searches at the Large Hadron Collider, needed to find a lower bound on the scale at which baryon number is spontaneously broken. The di-photon channel turns out to be a very sensitive probe in the case of small scalar mixing and can severely constrain the baryonic scale. We also study the properties of the leptophobic gauge boson in order to understand the testability of these theories at the LHC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا