No Arabic abstract
In multiscale and topcolor-assisted models of walking technicolor, relatively light spin-one technihadrons $rho_T$ and $omega_T$ exist and are expected to decay as $rho_T to W pi_T, Z pi_T$ and $omega_T to gamma pi_T$. For $M_{rho_T} simeq 200 GeV$ and $M_{pi_T} simeq 100 GeV$, these processes have cross sections in the picobarn range in $bar p p$ colisions at the Tevatron and about 10 times larger at the Large Hadron Collider. We demonstrate their detectability with simulations appropriate to Run II conditions at the Tevatron.
In multiscale models of walking technicolor, relatively light color-singlet technipions are produced in $q ol q$ annihilation in association with longitudinal $W$ and $Z$ bosons and with each other. The technipions decay as $tpiz ra b ol b$ and $tpip ra c ol b$. Their production rates are resonantly enhanced by isovector technirho vector mesons with mass $M_W + M_{tpi} simle M_{tro} simle 2 M_{tpi}$. At the Tevatron, these associated production rates are 1--10 picobarns for $M_{tpi} simeq 100,gev$. Such a low mass technipion requires topcolor-assisted technicolor to suppress the decay $t ra tpip b$. Searches for $tpitpi$ production will also be rewarding. Sizable rates are expected if $M_{tro} simge 2M_{tpi} + 10,gev$. The isoscalar $omega_T$ is nearly degenerate with $tro$ and is expected to be produced at roughly the same rate. The $omega_T$ should have the distinctive decay modes $omega_T ra gamma tpiz$ and $Z tpiz$.
This paper explores the physics reach of the proton-proton Future Circular Collider (FCC-hh) and of the High-Energy LHC (HE-LHC) for searches of new particles produced in the $s$-channel and decaying to two high-energy leptons, jets (non-tops), tops or W/Z bosons. We discuss the expected discovery potential and exclusion limits for benchmark models predicting new massive particles that result in resonant structures in the invariant mass spectrum. We also present a detailed study of the HE-LHC potential to discriminate among different models, for a $Z$ that could be discovered by the end of High-Luminosity LHC (HL-LHC).
QCD instantons are arguably the best motivated yet unobserved nonperturbative effects predicted by the Standard Model. A discovery and detailed study of instanton-generated processes at colliders would provide a new window into the phenomenological exploration of QCD and a vastly improved fundamental understanding of its non-perturbative dynamics. Building on the optical theorem, we numerically calculate the total instanton cross-section from the elastic scattering amplitude, also including quantum effects arising from resummed perturbative exchanges between hard gluons in the initial state, thereby improving in accuracy on previous results. Although QCD instanton processes are predicted to be produced with a large scattering cross-section at small centre-of-mass partonic energies, discovering them at hadron colliders is a challenging task that requires dedicated search strategies. We evaluate the sensitivity of high-luminosity LHC runs, as well as low-luminosity LHC and Tevatron runs. We find that LHC low-luminosity runs in particular, which do not suffer from large pileup and trigger thresholds, show a very good sensitivity for discovering QCD instanton-generated processes.
We present next-to-next-to-leading-order (NNLO) QCD corrections to the production of three isolated photons in hadronic collisions at the fully differential level. We employ qT subtraction within MATRIX and an efficient implementation of analytic two-loop amplitudes in the leading-colour approximation to achieve the first on-the-fly calculation for this process at NNLO accuracy. Numerical results are presented for proton-proton collisions at energies ranging from 7 TeV to 100 TeV. We find full agreement with the 8 TeV results of arXiv:1911.00479 and confirm that NNLO corrections are indispensable to describe ATLAS 8 TeV data. In addition, we demonstrate the significance of NNLO corrections for future precision studies of triphoton production at higher collision energies.
We study methods for reconstructing the momenta of invisible particles in cascade decay chains at hadron colliders. We focus on scenarios, such as SUSY and UED, in which new physics particles are pair produced. Their subsequent decays lead to two decay chains ending with neutral stable particles escaping detection. Assuming that the masses of the decaying particles are already measured, we obtain the momenta by imposing the mass-shell constraints. Using this information, we develop techniques of determining spins of particles in theories beyond the standard model. Unlike the methods relying on Lorentz invariant variables, this method can be used to determine the spin of the particle which initiates the decay chain. We present two complementary ways of applying our method by using more inclusive variables relying on kinematic information from one decay chain, as well as constructing correlation variables based on the kinematics of both decay chains in the same event.