No Arabic abstract
While ordinary differential equations (ODEs) form the conceptual framework for modelling many cellular processes, specific situations demand stochastic models to capture the influence of noise. The most common formulation of stochastic models for biochemical networks is the chemical master equation (CME). While stochastic simulations are a practical way to realise the CME, analytical approximations offer more insight into the influence of noise. Towards that end, the two-moment approximation (2MA) is a promising addition to the established analytical approaches including the chemical Langevin equation (CLE) and the related linear noise approximation (LNA). The 2MA approach directly tracks the mean and (co)variance which are coupled in general. This coupling is not obvious in CME and CLE and ignored by LNA and conventional ODE models. We extend previous derivations of 2MA by allowing a) non-elementary reactions and b) relative concentrations. Often, several elementary reactions are approximated by a single step. Furthermore, practical situations often require the use relative concentrations. We investigate the applicability of the 2MA approach to the well established fission yeast cell cycle model. Our analytical model reproduces the clustering of cycle times observed in experiments. This is explained through multiple resettings of MPF, caused by the coupling between mean and (co)variance, near the G2/M transition.
Leaping methods show great promise for significantly accelerating stochastic simulations of complex biochemical reaction networks. However, few practical applications of leaping have appeared in the literature to date. Here, we address this issue using the partitioned leaping algorithm (PLA) [L.A. Harris and P. Clancy, J. Chem. Phys. 125, 144107 (2006)], a recently-introduced multiscale leaping approach. We use the PLA to investigate stochastic effects in two model biochemical reaction networks. The networks that we consider are simple enough so as to be accessible to our intuition but sufficiently complex so as to be generally representative of real biological systems. We demonstrate how the PLA allows us to quantify subtle effects of stochasticity in these systems that would be difficult to ascertain otherwise as well as not-so-subtle behaviors that would strain commonly-used exact stochastic methods. We also illustrate bottlenecks that can hinder the approach and exemplify and discuss possible strategies for overcoming them. Overall, our aim is to aid and motivate future applications of leaping by providing stark illustrations of the benefits of the method while at the same time elucidating obstacles that are often encountered in practice.
Genetically identical cells under the same environmental conditions can show strong variations in protein copy numbers due to inherently stochastic events in individual cells. We here develop a theoretical framework to address how variations in enzyme abundance affect the collective kinetics of metabolic reactions observed within a population of cells. Kinetic parameters measured at the cell population level are shown to be systematically deviated from those of single cells, even within populations of homogeneous parameters. Because of these considerations, Michaelis-Menten kinetics can even be inappropriate to apply at the population level. Our findings elucidate a novel origin of discrepancy between in vivo and in vitro kinetics, and offer potential utility for analysis of single-cell metabolomic data.
It is well known that the kinetics of an intracellular biochemical network is stochastic. This is due to intrinsic noise arising from the random timing of biochemical reactions in the network as well as due to extrinsic noise stemming from the interaction of unknown molecular components with the network and from the cells changing environment. While there are many methods to study the effect of intrinsic noise on the system dynamics, few exist to study the influence of both types of noise. Here we show how one can extend the conventional linear-noise approximation to allow for the rapid evaluation of the molecule numbers statistics of a biochemical network influenced by intrinsic noise and by slow lognormally distributed extrinsic noise. The theory is applied to simple models of gene regulatory networks and its validity confirmed by comparison with exact stochastic simulations. In particular we show how extrinsic noise modifies the dependence of the variance of the molecule number fluctuations on the rate constants, the mutual information between input and output signalling molecules and the robustness of feed-forward loop motifs.
This is a short review of two common approximations in stochastic chemical and biochemical kinetics. It will appear as Chapter 6 in the book Quantitative Biology: Theory, Computational Methods and Examples of Models edited by Brian Munsky, Lev Tsimring and Bill Hlavacek (to be published in late 2017/2018 by MIT Press). All chapter references in this article refer to chapters in the aforementioned book.
We present herein an extension of an algebraic statistical method for inferring biochemical reaction networks from experimental data, proposed recently in [3]. This extension allows us to analyze reaction networks that are not necessarily full-dimensional, i.e., the dimension of their stoichiometric space is smaller than the number of species. Specifically, we propose to augment the original algebraic-statistical algorithm for network inference with a preprocessing step that identifies the subspace spanned by the correct reaction vectors, within the space spanned by the species. This dimension reduction step is based on principal component analysis of the input data and its relationship with various subspaces generated by sets of candidate reaction vectors. Simulated examples are provided to illustrate the main ideas involved in implementing this method, and to asses its performance.