Do you want to publish a course? Click here

A Dimension Reduction Method for Inferring Biochemical Networks

219   0   0.0 ( 0 )
 Added by Grzegorz A Rempala
 Publication date 2009
  fields Biology
and research's language is English




Ask ChatGPT about the research

We present herein an extension of an algebraic statistical method for inferring biochemical reaction networks from experimental data, proposed recently in [3]. This extension allows us to analyze reaction networks that are not necessarily full-dimensional, i.e., the dimension of their stoichiometric space is smaller than the number of species. Specifically, we propose to augment the original algebraic-statistical algorithm for network inference with a preprocessing step that identifies the subspace spanned by the correct reaction vectors, within the space spanned by the species. This dimension reduction step is based on principal component analysis of the input data and its relationship with various subspaces generated by sets of candidate reaction vectors. Simulated examples are provided to illustrate the main ideas involved in implementing this method, and to asses its performance.



rate research

Read More

Biochemical reaction networks frequently consist of species evolving on multiple timescales. Stochastic simulations of such networks are often computationally challenging and therefore various methods have been developed to obtain sensible stochastic approximations on the timescale of interest. One of the rigorous and popular approaches is the multiscale approximation method for continuous time Markov processes. In this approach, by scaling species abundances and reaction rates, a family of processes parameterized by a scaling parameter is defined. The limiting process of this family is then used to approximate the original process. However, we find that such approximations become inaccurate when combinations of species with disparate abundances either constitute conservation laws or form virtual slow auxiliary species. To obtain more accurate approximation in such cases, we propose here an appropriate modification of the original method.
There are many mathematical models of biochemical cell signaling pathways that contain a large number of elements (species and reactions). This is sometimes a big issue for identifying critical model elements and describing the model dynamics. Thus, techniques of model reduction can be used as a mathematical tool in order to minimize the number of variables and parameters. In this thesis, we review some well-known methods of model reduction for cell signaling pathways. We have also developed some approaches that provide us a great step forward in model reduction. The techniques are quasi steady state approximation (QSSA), quasi equilibrium approximation (QEA), lumping of species and entropy production analysis. They are applied on protein translation pathways with microRNA mechanisms, chemical reaction networks, extracellular signal regulated kinase (ERK) pathways, NFkB signal transduction pathways, elongation factors EFTu and EFTs signaling pathways and Dihydrofolate reductase (DHFR) pathways. The main aim of this thesis is to reduce the complex cell signaling pathway models. This provides one a better understanding of the dynamics of such models and gives an accurate approximate solution. Results show that there is a good agreement between the original models and the simplified models.
We present a novel method for identifying a biochemical reaction network based on multiple sets of estimated reaction rates in the corresponding reaction rate equations arriving from various (possibly different) experiments. The current method, unlike some of the graphical approaches proposed in the literature, uses the values of the experimental measurements only relative to the geometry of the biochemical reactions under the assumption that the underlying reaction network is the same for all the experiments. The proposed approach utilizes algebraic statistical methods in order to parametrize the set of possible reactions so as to identify the most likely network structure, and is easily scalable to very complicated biochemical systems involving a large number of species and reactions. The method is illustrated with a numerical example of a hypothetical network arising form a mass transfer-type model.
Inferring functional relationships within complex networks from static snapshots of a subset of variables is a ubiquitous problem in science. For example, a key challenge of systems biology is to translate cellular heterogeneity data obtained from single-cell sequencing or flow-cytometry experiments into regulatory dynamics. We show how static population snapshots of co-variability can be exploited to rigorously infer properties of gene expression dynamics when gene expression reporters probe their upstream dynamics on separate time-scales. This can be experimentally exploited in dual-reporter experiments with fluorescent proteins of unequal maturation times, thus turning an experimental bug into an analysis feature. We derive correlation conditions that detect the presence of closed-loop feedback regulation in gene regulatory networks. Furthermore, we show how genes with cell-cycle dependent transcription rates can be identified from the variability of co-regulated fluorescent proteins. Similar correlation constraints might prove useful in other areas of science in which static correlation snapshots are used to infer causal connections between dynamically interacting components.
Across many fields, a problem of interest is to predict the transition rates between nodes of a network, given limited stationary state and dynamical information. We give a solution using the principle of Maximum Caliber. We find the transition rate matrix by maximizing the path entropy of a random walker on the network constrained to reproducing a stationary distribution and a few dynamical averages. A main finding here is that when constrained only by the mean jump rate, the rate matrix is given by a square-root dependence of the rate, $omega_{ab} propto sqrt{p_b/p_a}$, on $p_a$ and $p_b$, the stationary state populations at nodes a and b. We give two examples of our approach. First, we show that this method correctly predicts the correlated rates in a biochemical network of two genes, where we know the exact results from prior simulation. Second, we show that it correctly predicts rates of peptide conformational transitions, when compared to molecular dynamics simulations. This method can be used to infer large numbers of rates on known networks where smaller numbers of steady-state node populations are known.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا