Do you want to publish a course? Click here

Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: Universality with respect to the stochastic dynamic

236   0   0.0 ( 0 )
 Added by Per Arne Rikvold
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dynamical response of a two-dimensional Ising model subject to a square-wave oscillating external field. In contrast to earlier studies, the system evolves under a so-called soft Glauber dynamic [P.A. Rikvold and M. Kolesik, J. Phys. A: Math. Gen. 35, L117 (2002)], for which both nucleation and interface propagation are slower and the interfaces smoother than for the standard Glauber dynamic. We choose the temperature and magnitude of the external field such that the metastable decay of the system following field reversal occurs through nucleation and growth of many droplets of the stable phase, i.e., the multidroplet regime. Using kinetic Monte Carlo simulations, we find that the system undergoes a nonequilibrium phase transition, in which the symmetry-broken dynamic phase corresponds to an asymmetric stationary limit cycle for the time-dependent magnetization. The critical point is located where the half-period of the external field is approximately equal to the metastable lifetime of the system. We employ finite-size scaling analysis to investigate the characteristics of this dynamical phase transition. The critical exponents and the fixed-point value of the fourth-order cumulant are found to be consistent with the universality class of the two-dimensional equilibrium Ising model. As this universality class has previously been established for the same nonequilibrium model evolving under the standard Glauber dynamic, our results indicate that this far-from-equilibrium phase transition is universal with respect to the choice of the stochastic dynamics.



rate research

Read More

Using high-precision Monte-Carlo simulations based on a parallel version of the Wang-Landau algorithm and finite-size scaling techniques we study the effect of quenched disorder in the crystal-field coupling of the Blume-Capel model on the square lattice. We mainly focus on the part of the phase diagram where the pure model undergoes a continuous transition, known to fall into the universality class of the pure Ising ferromagnet. A dedicated scaling analysis reveals concrete evidence in favor of the strong universality hypothesis with the presence of additional logarithmic corrections in the scaling of the specific heat. Our results are in agreement with an early real-space renormalization-group study of the model as well as a very recent numerical work where quenched randomness was introduced in the energy exchange coupling. Finally, by properly fine tuning the control parameters of the randomness distribution we also qualitatively investigate the part of the phase diagram where the pure model undergoes a first-order phase transition. For this region, preliminary evidence indicate a smoothening of the transition to second-order with the presence of strong scaling corrections.
We report the nonequilibrium dynamical phase transition (NDPT) appearing in a kinetic Ising spin system (ISS) subject to the joint application of a deterministic external field and the stochastic mutually correlated noises simultaneously. A time-dependent Ginzburg-Landau stochastic differential equation, including an oscillating modulation and the correlated multiplicative and additive white noises, was addressed and the numerical solution to the relevant Fokker-Planck equation was presented on the basis of an average-period approach of driven field. The correlated white noises and the deterministic modulation induce a kind of dynamic symmetry-breaking order, analogous to the stochastic resonance in trend, in the kinetic ISS, and the reentrant transition has been observed between the dynamic disorder and order phases when the intensities of multiplicative and additive noises were changing. The dependencies of a dynamic order parameter Q upon the intensities of additive noise A and multiplicative noise M, the correlation lmda between two noises, and the amplitude of applied external field h were investigated quantitatively and visualized vividly. A brief discussion was given to outline the underlying mechanism of the NDPT in a kinetic ISS driven by an external force and correlated noises. Keywords: Ising spin system, nonequilibrium dynamical phase transition, stochastic resonance, correlated noises, TDGL model. PACS: 75.10.Hk, 64.60.Ht, 05.10.Gg, 76.20.+q
69 - Kyungwha Park 2003
We study low-temperature nucleation in kinetic Ising models by analytical and simulational methods, confirming the general result for the average metastable lifetime, <tau> = A*exp(beta*Gamma) (beta = 1/kT) [E. Jordao Neves and R.H. Schonmann, Commun. Math. Phys. 137, 209 (1991)]. Contrary to common belief, we find that both A and Gamma depend significantly on the stochastic dynamic. In particular, for a ``soft dynamic, in which the effects of the interactions and the applied field factorize in the transition rates, Gamma does NOT simply equal the energy barrier against nucleation, as it does for the standard Glauber dynamic, which does not have this factorization property.
We studied the dynamic response and stochastic resonance of kinetic Ising spin system (ISS), subject to the joint external field of weak sinusoidal modulation and stochastic white-noise, through solving the mean-field equation of motion based on Glauber dynamics. The periodically driven stochastic ISS shows the occurrence of characteristic stochastic resonance as well as nonequilibrium dynamic phase transition (NDPT) when the frequency and amplitude h0 of driving field, the temperature t of the system and noise intensity D attain a specific accordance in quantity. There exist in the system two typical dynamic phases, referred to as dynamic disordered paramagnetic and ordered ferromagnetic phases respectively, corresponding to zero and unit dynamic order parameter. We also figured out the NDPT boundary surface of the system which separates the dynamic paramagnetic and dynamic ferromagnetic phase in the 3D parameter space of h0~t~D. An intriguing dynamical ferromagnetic phase with an intermediate order parameter at 0.66 was revealed for the first time in the ISS subject to the perturbation of a joint determinant and stochastic field. Our primary result indicates that the intermediate order dynamical ferromagnetic phase is dynamic metastable in nature and owns a peculiar characteristic in its stability and response to external driving field when compared with fully order dynamic ferromagnetic phase.
The quantum Kibble-Zurek mechanism (QKZM) predicts universal dynamical behavior in the vicinity of quantum phase transitions (QPTs). It is now well understood for one-dimensional quantum matter. Higher-dimensional systems, however, remain a challenge, complicated by fundamental differences of the associated QPTs and their underlying conformal field theories. In this work, we take the first steps towards exploring the QKZM in two dimensions. We study the dynamical crossing of the QPT in the paradigmatic Ising model by a joint effort of modern state-of-the-art numerical methods. As a central result, we quantify universal QKZM behavior close to the QPT. However, upon traversing further into the ferromagnetic regime, we observe deviations from the QKZM prediction. We explain the observed behavior by proposing an {it extended QKZM} taking into account spectral information as well as phase ordering. Our work provides a starting point towards the exploration of dynamical universality in higher-dimensional quantum matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا