No Arabic abstract
Neutron diffraction is used to investigate the field-induced, antiferromagnetically ordered state in the two-leg spin-ladder material (Hpip)2CuBr4. This classical phase, a consequence of weak interladder coupling, is nevertheless highly unconventional: its properties are influenced strongly by the spin Luttinger-liquid state of the ladder subunits. We determine directly the order parameter (transverse magnetization), the ordering temperature, the spin structure, and the critical exponents around the transition. We introduce a minimal, microscopic model for the interladder coupling and calculate the quantum fluctuation corrections to the mean-field interaction.
When the transition temperature of a continuous phase transition is tuned to absolute zero, new ordered phases and physical behaviour emerge in the vicinity of the resulting quantum critical point. Sr3Ru2O7 can be tuned through quantum criticality with magnetic field at low temperature. Near its critical field Bc it displays the hallmark T-linear resistivity and a T log(1/T) electronic heat capacity behaviour of strange metals. However, these behaviours have not been related to any critical fluctuations. Here we use inelastic neutron scattering to reveal the presence of collective spin fluctuations whose relaxation time and strength show a nearly singular variation with magnetic field as Bc is approached. The large increase in the electronic heat capacity and entropy near Bc can be understood quantitatively in terms of the scattering of conduction electrons by these spin-fluctuations. On entering the spin density wave (SDW) phase present near Bc, the fluctuations become stronger suggesting that the SDW order is stabilised through an order-by-disorder mechanism.
KCuCl$_3$ is a three-dimensional coupled spin-dimer system and has a singlet ground state with an excitation gap ${Delta}/k_{rm B}=31$ K. High-field magnetization measurements for KCuCl$_3$ have been performed in static magnetic fields of up to 30 T and in pulsed magnetic fields of up to 60 T. The entire magnetization curve including the saturation region was obtained at $T=1.3$ K. From the analysis of the magnetization curve, it was found that the exchange parameters determined from the dispersion relations of the magnetic excitations should be reduced, which suggests the importance of the renormalization effect in the magnetic excitations. The field-induced magnetic ordering accompanied by the cusplike minimum of the magnetization was observed as in the isomorphous compound TlCuCl$_3$. The phase boundary was almost independent of the field direction, and is represented by the power law. These results are consistent with the magnon Bose-Einstein condensation picture for field-induced magnetic ordering.
The challenge of one-dimensional systems is to understand their physics beyond the level of known elementary excitations. By high-resolution neutron spectroscopy in a quantum spin ladder material, we probe the leading multiparticle excitation by characterizing the two-magnon bound state at zero field. By applying high magnetic fields, we create and select the singlet (longitudinal) and triplet (transverse) excitations of the fully spin-polarized ladder, which have not been observed previously and are close analogs of the modes anticipated in a polarized Haldane chain. Theoretical modelling of the dynamical response demonstrates our complete quantitative understanding of these states.
It has recently been found that bosonic excitations of ordered media, such as phonons or spinons, can exhibit topologically nontrivial band structures. Of particular interest are magnon and triplon excitations in quantum magnets, as they can easily be manipulated by an applied field. Here we study triplon excitations in an S=1/2 quantum spin ladder and show that they exhibit nontrivial topology, even in the quantum-disordered paramagnetic phase. Our analysis reveals that the paramagnetic phase actually consists of two separate regions with topologically distinct triplon excitations. We demonstrate that the topological transition between these two regions can be tuned by an external magnetic field. The winding number that characterizes the topology of the triplons is derived and evaluated. By the bulk-boundary correspondence, we find that the non-zero winding number implies the presence of localized triplon end states. Experimental signatures and possible physical realizations of the topological paramagnetic phase are discussed.
The quantum phases in a spin-1 skewed ladder system formed by alternately fusing five- and seven-membered rings is studied numerically using exact diagonalization technique up to 16 spins and using density matrix renormalization group method for larger system sizes. The ladder has isotropic antiferromagnetic (AF) exchange interaction ($J_2 = 1$) between the nearest neighbor spins along the legs, varying isotropic AF exchange interaction ($J_1$) along the rungs. As a function of $J_1$, the system shows many interesting ground states (gs) which vary from different types of nonmagnetic gs to different kinds of ferrimagnetic gs. Study of different gs properties such as spin gap, spin-spin correlations, spin density and bond order reveal that the system has four distinct phases namely, AF phase at small $J_1$, ferrimagnetic phase with gs spin $S_G = n$ for $1.44 < J_1 < 4.74$ and with $S_G = 2n$ for $J_1 > 5.63$, where $n$ is the number of unit cells, a reentrant nonmagnetic phase at $4.74 < J_1 < 5.44$. The system also shows the presence of spin current at specific $J_1$ values due to simultaneous breaking of both reflection and spin parity symmetries.