No Arabic abstract
In this Letter, we introduce a modified collaborative filtering (MCF) algorithm, which has remarkably higher accuracy than the standard collaborative filtering. In the MCF, instead of the standard Pearson coefficient, the user-user similarities are obtained by a diffusion process. Furthermore, by considering the second order similarities, we design an effective algorithm that depresses the influence of mainstream preferences. The corresponding algorithmic accuracy, measured by the ranking score, is further improved by 24.9% in the optimal case. In addition, two significant criteria of algorithmic performance, diversity and popularity, are also taken into account. Numerical results show that the algorithm based on second order similarity can outperform the MCF simultaneously in all three criteria.
In this paper, by introducing a new user similarity index base on the diffusion process, we propose a modified collaborative filtering (MCF) algorithm, which has remarkably higher accuracy than the standard collaborative filtering. In the proposed algorithm, the degree correlation between users and objects is taken into account and embedded into the similarity index by a tunable parameter. The numerical simulation on a benchmark data set shows that the algorithmic accuracy of the MCF, measured by the average ranking score, is further improved by 18.19% in the optimal case. In addition, two significant criteria of algorithmic performance, diversity and popularity, are also taken into account. Numerical results show that the presented algorithm can provide more diverse and less popular recommendations, for example, when the recommendation list contains 10 objects, the diversity, measured by the hamming distance, is improved by 21.90%.
Heterogeneity of both the source and target objects is taken into account in a network-based algorithm for the directional resource transformation between objects. Based on a biased heat conduction recommendation method (BHC) which considers the heterogeneity of the target object, we propose a heterogeneous heat conduction algorithm (HHC), by further taking the source object degree as the weight of diffusion. Tested on three real datasets, the Netflix, RYM and MovieLens, the HHC algorithm is found to present a better recommendation in both the accuracy and personalization than two excellent algorithms, i.e., the original BHC and a hybrid algorithm of heat conduction and mass diffusion (HHM), while not requiring any other accessorial information or parameter. Moreover, the HHC even elevates the recommendation accuracy on cold objects, referring to the so-called cold start problem, for effectively relieving the recommendation bias on objects with different level of popularity.
In this paper, we propose a novel method to compute the similarity between congeneric nodes in bipartite networks. Different from the standard Person correlation, we take into account the influence of nodes degree. Substituting this new definition of similarity for the standard Person correlation, we propose a modified collaborative filtering (MCF). Based on a benchmark database, we demonstrate the great improvement of algorithmic accuracy for both user-based MCF and object-based MCF.
We propose a method to remove the contributions of pileup events from higher-order cumulants and moments of event-by-event particle distributions. Assuming that the pileup events are given by the superposition of two independent single-collision events, we show that the true moments in each multiplicity bin can be obtained recursively from lower multiplicity events. In the correction procedure the necessary information are only the probabilities of pileup events. Other terms are extracted from the experimental data. We demonstrate that the true cumulants can be reconstructed successfully by this method in simple models. Systematics on trigger inefficiencies and correction parameters are discussed.
High-order, beyond-pairwise interdependencies are at the core of biological, economic, and social complex systems, and their adequate analysis is paramount to understand, engineer, and control such systems. This paper presents a framework to measure high-order interdependence that disentangles their effect on each individual pattern exhibited by a multivariate system. The approach is centred on the local O-information, a new measure that assesses the balance between synergistic and redundant interdependencies at each pattern. To illustrate the potential of this framework, we present a detailed analysis of music scores from J.S. Bach, which reveals how high-order interdependence is deeply connected with highly non-trivial aspects of the musical discourse. Our results place the local O-information as a promising tool of wide applicability, which opens new perspectives for analysing high-order relationships in the patterns exhibited by complex systems.