Do you want to publish a course? Click here

Crystal Growth and Anisotropic Magnetic Properties of RAg$_2$Ge$_2$ (R = Pr, Nd and Sm) Single Crystals

144   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the single crystal growth and anisotropic magnetic properties of the tetragonal RAg$_2$Ge$_2$ (R = Pr, Nd and Sm) compounds which crystallize in the ThCr$_2$Si$_2$ type crystal structure with the space group textit{I4/mmm}. The single crystals of RAg$_2$Ge$_2$ (R = Pr, Nd and Sm) were grown by self-flux method using Ag:Ge binary alloy as flux. From the magnetic studies on single crystalline samples we have found that PrAg$_2$Ge$_2$ and NdAg$_2$Ge$_2$ order antiferromagnetically at 12 K and 2 K respectively, thus corroborating the earlier polycrystalline results. SmAg$_2$Ge$_2$ also orders antiferromagnetically at 9.2 K. The magnetic susceptibility and magnetization show a large anisotropy and the easy axis of magnetization for PrAg$_2$Ge$_2$ and NdAg$_2$Ge$_2$ is along the [100] direction where as it changes to [001] direction for SmAg$_2$Ge$_2$. Two metamagnetic transitions were observed in NdAg$_2$Ge$_2$ at $H_{rm m1}$ = 1.25 T and $H_{rm m2}$ =3.56 T for the field parallel to [100] direction where as the magnetization along [001] direction was linear indicating the hard axis of magnetization.



rate research

Read More

We report the anisotropic magnetic properties of the ternary compound ErAl$_2$Ge$_2$. Single crystals of this compound were grown by high temperature solution growth technique,using Al:Ge eutectic composition as flux. From the powder x-ray diffraction we confirmed that ErAl$_2$Ge$_2$ crystallizes in the trigonal CaAl$_2$Si$_2$-type crystal structure. The anisotropic magnetic properties of a single crystal were investigated by measuring the magnetic susceptibility, magnetization, heat capacity and electrical resistivity. A bulk magnetic ordering occurs around 4 K inferred from the magnetic susceptibility and the heat capacity. The magnetization measured along the $ab$-plane increases more rapidly than along the $c$-axis suggesting the basal $ab$-plane as the easy plane of magnetization. The magnetic susceptibility, magnetization and the $4f$-derived part of the heat capacity in the paramagnetic regime analysed based on the point charge model of the crystalline electric field (CEF) indicate a relatively low CEF energy level splitting.
The anisotropic magnetic properties of the antiferromagnetic compound CePd$_2$Ge$_2$, crystallizing in the tetragonal crystal structure have been investigated in detail on a single crystal grown by Czochralski method. From the electrical transport, magnetization and heat capacity data, the N{e}el temperature is confirmed to be 5.1 K. Anisotropic behaviour of magnetization and resistivity is observed along the two principal crystallographic directions viz., [100] and [001]. The isothermal magnetization measured in the magnetically ordered state at 2 K exhibits a spin re-orientation at 13.5 T for field applied along [100] direction, whereas the magnetization was linear along the [001] direction attaining a value of 0.94 $mu_{rm B}$/Ce at 14 T. The reduced value of the magnetization is attributed to the crystalline electric field (CEF) effects. A sharp jump in the specific heat at the magnetic ordering temperature is observed. After subtracting the phononic contribution, the jump in the heat capacity amounts to 12.5 J/K mol which is the expected value for a spin ${1}{2}$ system. From the CEF analysis of the magnetization data the excited crystal field split energy levels were estimated to be at 120 K and 230 K respectively, which quantitatively explain the observed Schottky anomaly in the heat capacity. A magnetic phase diagram has been constructed based on the field dependence of magnetic susceptibility and the heat capacity data.
132 - K. Berggold , T. Lorenz , J. Baier 2005
We have studied the thermal conductivity $kappa$ on single crystalline samples of the antiferromagnetic monolayer cuprates R$_2$CuO$_4$ with R = La, Pr, Nd, Sm, Eu, and Gd. For a heat current within the CuO$_2$ planes, i.e. for $kappa_{ab}$ we find high-temperature anomalies around 250 K in all samples. In contrast, the thermal conductivity $kappa_c$ perpendicular to the CuO$_2$ planes, which we measured for R = La, Pr, and Gd, shows a conventional temperature dependence as expected for a purely phononic thermal conductivity. This qualitative anisotropy of $kappa_i$ and the anomalous temperature dependence of $kappa_{ab}$ give evidence for a significant magnetic contribution $kappa_{mag}$ to the heat transport within the CuO$_2$ planes. Our results suggest, that a large magnetic contribution to the heat current is a common feature of single-layer cuprates. We find that $kappa_{mag}$ is hardly affected by structural instabilities, whereas already weak charge carrier doping causes a strong suppression of $kappa_{mag}$.
Single crystals of the LnFeAsO (Ln1111, Ln = Pr, Nd, and Sm) family with lateral dimensions up to 1 mm were grown from NaAs and KAs flux at high pressure. The crystals are of good structural quality and become superconducting when O is partially substituted by F (PrFeAsO1-xFx and NdFeAsO1-xFx) or when Fe is substituted by Co (SmFe1-xCoxAsO). From magnetization measurements, we estimate the temperature dependence and anisotropy of the upper critical field and the critical current density of underdoped PrFeAsO0.7F0.3 crystal with Tc = 25 K. Single crystals of SmFe1-xCoxAsO with maximal Tc up to 16.3 K for x = 0.08 were grown for the first time. From transport and magnetic measurements we estimate the critical fields and their anisotropy, and find these superconducting properties to be quite comparable to the ones in SmFeAsO1-xFx with a much higher Tc of = 50 K. The magnetically measured critical current densities are as high as 109 A/m2 at 2 K up to 7 T, with indication of the usual fishtail effect. The upper critical field estimated from resistivity measurements is anisotropic with slopes of -8.7 T/K (H // ab-plane) and -1.7 T/K (H // c-axis). This anisotropy (= 5) is similar to that in other Ln1111 crystals with various higher Tc s.
High-temperature indium flux growth was applied to prepare single crystals of GdRh$_2$Si$_2$ by a modified Bridgman method leading to mm-sized single crystals with a platelet habitus. Specific heat and susceptibility data of GdRh$_2$Si$_2$ exhibit a pronounced anomaly at $T_N = 107rm ,K$, where the AFM ordering sets in. Magnetic measurements on the single crystals were performed down to $T = 2$,K in external fields from B = 0 - 9,T applied along the $[100]$-, $[110]$- and $[001]$-direction of the tetragonal lattice. The effective magnetic moment determined from a Curie-Weiss fit agrees well with values from literature, and is larger than the theoretically predicted value. Electrical transport data recorded for current flow parallel and perpendicular to the $[001]$-direction show a large anisotropy below $T_N$. The residual resistivity ratio $rm RRR=rho_{300K}/rho_{0}sim 23$ demonstrates that we succeeded in preparing high-quality crystals using high-temperature indium flux-growth.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا