We present 3D radiation-gasdynamical simulations of an ionization front running into a dense clump. In our setup, a B0 star irradiates an overdensity which is at a distance of 10 pc and modelled as a supercritical 100 M_sol Bonnor-Ebert sphere. The radiation from the star heats up the gas and creates a shock front that expands into the interstellar medium. The shock compresses the clump material while the ionizing radiation heats it up. The outcome of this cloud-crushing process is a fully turbulent gas in the wake of the clump. In the end, the clump entirely dissolves. We propose that this mechanism is very efficient in creating short-living supersonic turbulence in the vicinity of massive stars.
Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, alike turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetized cases. The most relevant observational techniques that provide quantitative insights of interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what could be the the main sources of turbulence in the interstellar medium.
How cosmic rays sample the multi-phase interstellar medium (ISM) in starburst galaxies has important implications for many science goals, including evaluating the cosmic ray calorimeter model for these systems, predicting their neutrino fluxes, and modeling their winds. Here, we use Monte Carlo simulations to study cosmic ray sampling of a simple, two-phase ISM under conditions similar to those of the prototypical starburst galaxy M82. The assumption that cosmic rays sample the mean density of the ISM in the starburst region is assessed over a multi-dimensional parameter space where we vary the number of molecular clouds, the galactic wind speed, the extent to which the magnetic field is tangled, and the cosmic ray injection mechanism. We evaluate the ratio of the emissivity from pion production in molecular clouds to the emissivity that would be observed if the cosmic rays sampled the mean density, and seek areas of parameter space where this ratio differs significantly from unity. The assumption that cosmic rays sample the mean density holds over much of parameter space; however, this assumption begins to break down for high cloud density, injection close to the clouds, and a very tangled magnetic field. We conclude by evaluating the extent to which our simulated starburst region behaves as a proton calorimeter and constructing the time-dependent spectrum of a burst of cosmic rays.
Galaxies interstellar media (ISM) are observed to be supersonically-turbulent, but the ultimate power source that drives turbulent motion remains uncertain. The two dominant models are that the turbulence is driven by star formation feedback and/or that it is produced by gravitational instability in the gas. Here we show that, while both models predict that the galaxies ISM velocity dispersions will be positively correlated with their star formation rates, the forms of the correlation predicted by these two models are subtly but measurably different. A feedback-driven origin for the turbulence predicts a velocity dispersion that rises more sharply with star formation rate, and that does not depend on the gas fraction (i.e. $dot{M}_* propto sigma^2$), while a gravity-driven model yields a shallower rise and a strong dependence on gas fraction (i.e. $dot{M}_* propto f_g^2 sigma$). We compare the models to a collection of data on local and high-redshift galaxies culled from the literature, and show that the correlation expected for gravity-driven turbulence is a better match to the observations than a feedback-driven model. This suggests that gravity is the ultimate source of ISM turbulence, at least in the rapidly-star-forming, high velocity dispersion galaxies for which our test is most effective. We conclude by discussing the limitations of the present data set, and the prospects for future measurements to enable a more definitive test of the two models.
We present a generic mechanism for the thermal damping of compressive waves in the interstellar medium (ISM), occurring due to radiative cooling. We solve for the dispersion relation of magnetosonic waves in a two-fluid (ion-neutral) system in which density- and temperature-dependent heating and cooling mechanisms are present. We use this dispersion relation, in addition to an analytic approximation for the nonlinear turbulent cascade, to model dissipation of weak magnetosonic turbulence. We show that in some ISM conditions, the cutoff wavelength for magnetosonic turbulence becomes tens to hundreds of times larger when the thermal damping is added to the regular ion-neutral damping. We also run numerical simulations which confirm that this effect has a dramatic impact on cascade of compressive wave modes.
We report the highest-fidelity observations of the spiral galaxy M51 in CO emission, revealing the evolution of giant molecular clouds (GMCs) vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (so-called GMAs) are first assembled and then broken up as the gas flow through the spiral arms. The GMAs and their H2 molecules are not fully dissociated into atomic gas as predicted in stellar feedback scenarios, but are fragmented into smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as the chains of GMCs that emerge from the spiral arms into interarm regions. The kinematic shear within the spiral arms is sufficient to unbind the GMAs against self-gravity. We conclude that the evolution of GMCs is driven by large-scale galactic dynamics --their coagulation into GMAs is due to spiral arm streaming motions upon entering the arms, followed by fragmentation due to shear as they leave the arms on the downstream side. In M51, the majority of the gas remains molecular from arm entry through the inter-arm region and into the next spiral arm passage.