Do you want to publish a course? Click here

Ubiquitous Water Masers in Nearby Star-Forming Galaxies

111   0   0.0 ( 0 )
 Added by Jeremy Darling
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of water maser emission from four nearby galaxies hosting ultradense HII (UDHII) regions, He 2-10, the Antennae galaxies (NGC 4038/4039), NGC 4214, and NGC 5253, with the Green Bank Telescope. Our detection rate is 100%, and all of these H2O kilomasers (L(H2O) < 10 L_sun) are located toward regions of known star formation as traced by UDHII regions and bright 24 micron emission. Some of the newly discovered H2O masers have luminosities 1-2 orders of magnitude less than previous extragalactic studies and the same order of magnitude as those typical of Galactic massive star-forming regions. The unusual success of this minisurvey suggests that H2O maser emission may be very common in starburst galaxies, and the paucity of detections to date is due to a lack of sufficient sensitivity. While the galaxy sample was selected by the presence of UDHII regions, and the UDHII regions lie within the telescope beam, in the absence of H2O spectral line maps the connection between H2O masers and UDHII regions has not yet been demonstrated.

rate research

Read More

285 - J. Brand 2004
An overview is given of the analysis of more than a decade of H2O maser data from our monitoring program. We find the maser emission to generally depend on the luminosity of the YSO as well as on the geometry of the SFR. There appears to be a threshold luminosity of a few times 10**4 Lsol above and below which we find different maser characteristics.
106 - J. P. McKean 2010
Luminous extragalactic water masers are known to be associated with AGN and have provided accurate estimates for the mass of the central supermassive black hole and the size and structure of the accretion disk in nearby galaxies. To find water masers at much higher redshifts, we have begun a survey of known gravitationally lensed quasars and star-forming galaxies. In this paper, we present a search for 22 GHz (rest frame) water masers toward five dusty, gravitationally lensed quasars and star-forming galaxies at redshifts 2.3--2.9 with the Effelsberg telescope and the EVLA. Our observations do not find any new definite examples of high redshift water maser galaxies, suggesting that large reservoirs of dust and gas are not a sufficient condition for powerful water maser emission. However, we do find the tentative detection of a water maser system in the active galaxy IRAS 10214+4724 at redshift 2.285. Our survey has now doubled the number of lensed galaxies and quasars that have been searched for high redshift water masers. We present an analysis of the high redshift water maser luminosity function that is based on the results presented here and from the only cosmologically distant (z > 1) water maser galaxy found thus far, MG J0414+0534 at redshift 2.64. By comparing with the luminosity function locally and at moderate redshifts, we find that there must be some evolution in the luminosity function of water maser galaxies at high redshifts. By assuming a moderate evolution [(1 + z )^4] in the luminosity function, we find that blind surveys for water maser galaxies are only worthwhile with extremely high sensitivity like that of the planned Square Kilometre Array. However, instruments like the EVLA and MeerKAT will be capable of detecting water maser systems similar to the one found from MG J0414+0534 through targeted observations.
Maser emission plays an important role as a tool in star formation studies. It is widely used for deriving kinematics, as well as the physical conditions of different structures, hidden in the dense environment very close to the young stars, for example associated with the onset of jets and outflows. We will summarize the recent observational and theoretical progress on this topic since the last maser symposium: the IAU Symposium 242 in Alice Springs.
Galactic winds are a prime suspect for the metal enrichment of the intergalactic medium and may have a strong influence on the chemical evolution of galaxies and the nature of QSO absorption line systems. We use a sample of 1406 galaxy spectra at z~1.4 from the DEEP2 redshift survey to show that blueshifted Mg II 2796, 2803 A absorption is ubiquitous in starforming galaxies at this epoch. This is the first detection of frequent outflowing galactic winds at z~1. The presence and depth of absorption are independent of AGN spectral signatures or galaxy morphology; major mergers are not a prerequisite for driving a galactic wind from massive galaxies. Outflows are found in coadded spectra of galaxies spanning a range of 30x in stellar mass and 10x in star formation rate (SFR), calibrated from K-band and from MIPS IR fluxes. The outflows have column densities of order N_H ~ 10^20 cm^-2 and characteristic velocities of ~ 300-500 km/sec, with absorption seen out to 1000 km/sec in the most massive, highest SFR galaxies. The velocities suggest that the outflowing gas can escape into the IGM and that massive galaxies can produce cosmologically and chemically significant outflows. Both the Mg II equivalent width and the outflow velocity are larger for galaxies of higher stellar mass and SFR, with V_wind ~ SFR^0.3, similar to the scaling in low redshift IR-luminous galaxies. The high frequency of outflows in the star-forming galaxy population at z~1 indicates that galactic winds occur in the progenitors of massive spirals as well as those of ellipticals. The increase of outflow velocity with mass and SFR constrains theoretical models of galaxy evolution that include feedback from galactic winds, and may favor momentum-driven models for the wind physics.
119 - J. M. De Buizer 2004
We present here a mid-infrared imaging survey of 26 sites of water maser emission. Observations were obtained at the InfraRed Telescope Facility 3-m telescope with the University of Florida mid-infrared imager/spectrometer OSCIR, and the JPL mid-infrared camera MIRLIN. The main purpose of the survey was to explore the relationship between water masers and the massive star formation process. It is generally believed that water masers predominantly trace outflows and embedded massive stellar objects, but may also exist in circumstellar disks around young stars. We investigate each of these possibilities in light of our mid-infrared imaging. We find that mid-infrared emission seems to be more closely associated with water and OH maser emission than cm radio continuum emission from UC HII regions. We also find from the sample of sources in our survey that, like groups of methanol masers, both water and OH masers have a proclivity for grouping into linear or elongated distributions. We conclude that the vast majority of linearly distributed masers are not tracing circumstellar disks, but outflows and shocks instead.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا