Do you want to publish a course? Click here

Atmospheric pressure graphitization of SiC(0001)- A route towards wafer-size graphene layers

118   0   0.0 ( 0 )
 Added by Thomas Seyller
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated epitaxial graphene films grown on SiC(0001) by annealing in an atmosphere of Ar instead of vacuum. Using AFM and LEEM we observe a significantly improved surface morphology and graphene domain size. Hall measurements on monolayer graphene films show a carrier mobility of around 1000 cm^2/Vs at room temperature and 2000 cm^2/Vs at 27K. The growth process introduced here establishes the synthesis of graphene films on a technologically viable basis.



rate research

Read More

The early stages of epitaxial graphene layer growth on the Si-terminated 6H-SiC(0001) are investigated by Auger electron spectroscopy (AES) and depolarized Raman spectroscopy. The selection of the depolarized component of the scattered light results in a significant increase in the C-C bond signal over the second order SiC Raman signal, which allows to resolve submonolayer growth, including individual, localized C=C dimers in a diamond-like carbon matrix for AES C/Si ratio of $sim$3, and a strained graphene layer with delocalized electrons and Dirac single-band dispersion for AES C/Si ratio $>$6. The linear strain, measured at room temperature, is found to be compressive, which can be attributed to the large difference between the coefficients of thermal expansion of graphene and SiC. The magnitude of the compressive strain can be varied by adjusting the growth time at fixed annealing temperature.
This paper has been withdrawn due to the adherance to the double submission policies of a refereed journal. Our apologies.
Up to two layers of epitaxial graphene have been grown on the Si-face of two-inch SiC wafers exhibiting room-temperature Hall mobilities up to 1800 cm^2/Vs, measured from ungated, large, 160 micron x 200 micron Hall bars, and up to 4000 cm^2/Vs, from top-gated, small, 1 micron x 1.5 micron Hall bars. The growth process involved a combination of a cleaning step of the SiC in a Si-containing gas, followed by an annealing step in Argon for epitaxial graphene formation. The structure and morphology of this graphene has been characterized using AFM, HRTEM, and Raman spectroscopy. Furthermore, top-gated radio frequency field effect transistors (RF-FETs) with a peak cutoff frequency fT of 100 GHz for a gate length of 240 nm were fabricated using epitaxial graphene grown on the Si face of SiC that exhibited Hall mobilities up to 1450 cm^2/Vs from ungated Hall bars and 1575 cm^2/Vs from top-gated ones. This is by far the highest cut-off frequency measured from any kind of graphene.
We present a structural analysis of the graphene-4HSiC(0001) interface using surface x-ray reflectivity. We find that the interface is composed of an extended reconstruction of two SiC bilayers. The interface directly below the first graphene sheet is an extended layer that is more than twice the thickness of a bulk SiC bilayer (~1.7A compared to 0.63A). The distance from this interface layer to the first graphene sheet is much smaller than the graphite interlayer spacing but larger than the same distance measured for graphene grown on the (000-1) surface, as predicted previously by ab intio calculations.
The thermal decomposition of SiC surface provides, perhaps, the most promising method for the epitaxial growth of graphene on a material useful in the electronics platform. Currently, efforts are focused on a reliable method for the growth of large-area, low-strain epitaxial graphene that is still lacking. We report here a novel method for the fast, single-step epitaxial growth of large-area homogeneous graphene film on the surface of SiC(0001) using an infrared CO2 laser (10.6 {mu}m) as the heating source. Apart from enabling extreme heating and cooling rates, which can control the stacking order of epitaxial graphene, this method is cost-effective in that it does not necessitate SiC pre-treatment and/or high vacuum, it operates at low temperature and proceeds in the second time scale, thus providing a green solution to EG fabrication and a means to engineering graphene patterns on SiC by focused laser beams. Uniform, low-strain graphene film is demonstrated by scanning electron microscopy and x-ray photoelectron, secondary ion mass, and Raman spectroscopies. Scalability to industrial level of the method described here appears to be realistic, in view of the high rate of CO2-laser induced graphene growth and the lack of strict sample-environment conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا