Do you want to publish a course? Click here

The Optical Alignment System of the ZEUS MicroVertex Detector

234   0   0.0 ( 0 )
 Added by James Ferrando
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The laser alignment system of the ZEUS microvertex detector is described. The detector was installed in 2001 as part of an upgrade programme in preparation for the second phase of electron-proton physics at the HERA collider. The alignment system monitors the position of the vertex detector support structure with respect to the central tracking detector using semi-transparent amorphous-silicon sensors and diode lasers. The system is fully integrated into the general environmental monitoring of the ZEUS detector and data has been collected over a period of 5 years. The primary aim of defining periods of stability for track-based alignment has been achieved and the system is able to measure movements of the support structure to a precision around $10 mu$m.



rate research

Read More

156 - Muge Karagoz Unel 2008
The ATLAS detector at CERNs Large Hadron Collider (LHC) is equipped with a tracking system at its core (the Inner Detector, ID) consisting of silicon and gaseous straw tube detectors. The physics performance of the ID requires a precision alignment; a challenge involving complex algorithms and significant computing power. The alignment algorithms were already validated on: Combined Test Beam data, Cosmic Ray runs and simulated physics events. The alignment chain was tested on a daily basis in exercises that mimicked ATLAS data taking operations. ID commissioning after final installation into the ATLAS detector has yielded thousands of reconstructed cosmic ray tracks, which have been used for an initial alignment of the ID before the LHC start-up. A hardware system using Frequency Scanning Interferometry will be used to monitor structural deformations. Given the programme outlined here, the ATLAS Inner Detector has had a solid preparation for LHC collisions.
127 - A. Polini , I. Brock , S. Goers 2007
In order to extend the tracking acceptance, to improve the primary and secondary vertex reconstruction and thus enhancing the tagging capabilities for short lived particles, the ZEUS experiment at the HERA Collider at DESY installed a silicon strip vertex detector. The barrel part of the detector is a 63 cm long cylinder with silicon sensors arranged around an elliptical beampipe. The forward part consists of four circular shaped disks. In total just over 200k channels are read out using $2.9 {rm m^2}$ of silicon. In this report a detailed overview of the design and construction of the detector is given and the performance of the completed system is reviewed.
LHCb is one of the four main experiments of the Large Hadron Collider (LHC) project, which will start at CERN in 2008. The experiment is primarily dedicated to B-Physics and hence requires precise vertex reconstruction. The silicon vertex locator (VELO) has a single hit precision of better than 10 micron and is used both off-line and in the trigger. These requirements place strict constraints on its alignment. Additional challenges for the alignment arise from the detector being retracted between each fill of the LHC and from its unique circular disc r/phi strip geometry. This paper describes the track based software alignment procedure developed for the VELO. The procedure is primarily based on a non-iterative method using a matrix inversion technique. The procedure is demonstrated with simulated events to be fast, robust and to achieve a suitable alignment precision.
The LUX-ZEPLIN experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon. Surrounding the liquid xenon cryostat is an outer detector veto system with the primary aim of vetoing neutron single-scatter events in the liquid xenon that could mimic a weakly interacting massive particle (WIMP) dark matter signal. The outer detector consists of approximately 17 tonnes of gadolinium-loaded liquid scintillator confined to 10 acrylic tanks surrounding the cryostat and 228,000 litres of water as the outermost layer. It will be monitored by 120 inward-facing 8-inch photomultiplier tubes. An optical calibration system has been designed and built to calibrate and monitor these photomultiplier tubes allowing the veto system to reach its required efficiency and thus ensuring that LUX-ZEPLIN meets its target sensitivity.
The innermost part of the ATLAS experiment will be a pixel detector containing around 1750 individual detector modules. A detector control system (DCS) is required to handle thousands of I/O channels with varying characteristics. The main building blocks of the pixel DCS are the cooling system, the power supplies and the thermal interlock system, responsible for the ultimate safety of the pixel sensors. The ATLAS Embedded Local Monitor Board (ELMB), a multi purpose front end I/O system with a CAN interface, is foreseen for several monitoring and control tasks. The Supervisory, Control And Data Acquisition (SCADA) system will use PVSS, a commercial software product chosen for the CERN LHC experiments. We report on the status of the different building blocks of the ATLAS pixel DCS.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا