Do you want to publish a course? Click here

XMM-Newton Observations of the Nuclei of the Radio Galaxies 3C 305, DA 240, and 4C 73.08

172   0   0.0 ( 0 )
 Added by Daniel Evans
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new XMM-Newton EPIC observations of the nuclei of the nearby radio galaxies 3C 305, DA 240, and 4C 73.08, and investigate the origin of their nuclear X-ray emission. The nuclei of the three sources appear to have different relative contributions of accretion- and jet-related X-ray emission, as expected based on earlier work. The X-ray spectrum of the FRII narrow-line radio galaxy (NLRG) 4C 73.08 is modeled with the sum of a heavily absorbed power law that we interpret to be associated with a luminous accretion disk and circumnuclear obscuring structure, and an unabsorbed power law that originates in an unresolved jet. This behavior is consistent with other narrow-line radio galaxies. The X-ray emission of the low-excitation FRII radio galaxy DA 240 is best modeled as an unabsorbed power law that we associate with a parsec-scale jet, similar to other low-excitation sources that we have studied previously. However, the X-ray nucleus of the narrow-line radio galaxy 3C 305 shows no evidence for the heavily absorbed X-ray emission that has been found in other NLRGs. It is possible that the nuclear optical spectrum in 3C 305 is intrinsically weak-lined, with the strong emission arising from extended regions that indicate the presence of jet--environment interactions. Our observations of 3C 305 suggest that this source is more closely related to other weak-lined radio galaxies. This ambiguity could extend to other sources currently classified as NLRGs. We also present XMM-Newton and VLA observations of the hotspot of DA 240, arguing that this is another detection of X-ray synchrotron emission from a low-luminosity hotspot.



rate research

Read More

A series of nine XMM-Newton observations of the radio-loud quasar 3C 273 are presented, concentrating mainly on the soft excess. Although most of the individual observations do not show evidence for iron emission, co-adding them reveals a weak, broad line (EW ~ 56 eV). The soft excess component is found to vary, confirming previous work, and can be well fitted with multiple blackbody components, with temperatures ranging between ~40 and ~330 eV, together with a power-law. Alternatively, a Comptonisation model also provides a good fit, with a mean electron temperature of ~350 eV, although this value is higher when the soft excess is more luminous over the 0.5-10 keV energy band. In the RGS spectrum of 3C 273, a strong detection of the OVII He-alpha absorption line at zero redshift is made; this may originate in warm gas in the local intergalactic medium, consistent with the findings of both Fang et al. (2003) and Rasmussen et al. (2003).
65 - P. M. Ogle 2004
We present XMM-Newton observations of the radio galaxy 3C 120. The hard X-ray spectrum contains a marginally resolved Fe I K-alpha emission line with FWHM=9,000 km/s and an equivalent width of 57 eV. The line arises via fluorescence in a broad-line region with covering fraction of 0.4. There is no evidence of relativistically broad Fe K-alpha, contrary to some previous reports. The normal equivalent widths of the X-ray and optical emission lines exclude a strongly beamed synchrotron component to the hard X-ray and optical continua. There is an excess of 0.3-2 keV soft X-ray continuum over an extrapolation of the hard X-ray power-law, which may arise in a disk corona. Analysis of an archival Chandra image shows that extended emission from the jet and other sources contributes <3% of the total X-ray flux. A break in the X-ray spectrum below 0.6 keV indicates an excess neutral hydrogen column density of N_H=1.57 * 10^21 cm^{-2}. However, the neutral absorber must have an oxygen abundance of <1/50 of the solar value to explain the absence of an intrinsic or intervening O I edge. There is no ionized absorption in the soft X-ray spectrum, but there is a weak, narrow O VIII Ly-alpha emission line. We do not detect previously claimed O VIII absorption from the intervening intergalactic medium. Radio observations at 37 GHz show a fast, high frequency flare starting 8 days after the XMM-Newton observation. However, this has no obvious effect on the X-ray spectrum. The X-ray spectrum, including the soft excess, became harder as the X-ray flux decreased, with an estimated pivot energy of 40 keV. The UV and soft X-ray fluxes are strongly correlated over the 120 ks duration of the XMM-Newton observation. This is qualitatively consistent with Comptonization of UV photons by a hot corona. (Abridged)
Recent analyses of the broad spectral energy distributions (SED) of extensive lobes of local radio-galaxies have confirmed the leptonic origin of their Fermi/LAT gamma-ray emission, significantly constraining the level of hadronic contribution. SED of distant (D > 125 Mpc) radio-galaxy lobes are currently limited to the radio and X-ray bands, hence give no information on the presence of non-thermal (NT) protons but are adequate to describe the properties of NT electrons. Modeling lobe radio and X-ray emission in 3C 98, Pictor A, DA 240, Cygnus A, 3C 326, and 3C 236, we fully determine the properties of intra-lobe NT electrons and estimate the level of the related gamma-ray emission from Compton scattering of the electrons off the superposed Cosmic Microwave Background, Extragalactic Background Light, and source-specific radiation fields.
128 - Allison Bostrom 2014
We present the first high signal-to-noise XMM-Newton observations of the broad-line radio galaxy 3C 411. After fitting various spectral models, an absorbed double power-law continuum and a blurred relativistic disk reflection model (kdblur) are found to be equally plausible descriptions of the data. While the softer power-law component ($Gamma$=2.11) of the double power-law model is entirely consistent with that found in Seyfert galaxies (and hence likely originates from a disk corona), the additional power law component is very hard ($Gamma$=1.05); amongst the AGN zoo, only flat-spectrum radio quasars have such hard spectra. Together with the very flat radio-spectrum displayed by this source, we suggest that it should instead be classified as a FSRQ. This leads to potential discrepancies regarding the jet inclination angle, with the radio morphology suggesting a large jet inclination but the FSRQ classification suggesting small inclinations. The kdblur model predicts an inner disk radius of at most 20 r$_g$ and relativistic reflection.
97 - E. Belsole 2004
We present the results of XMM-Newton observations of three high-redshift powerful radio galaxies 3C 184, 3C 292 and 3C 322. Although none of the sources lies in as rich an X-ray-emitting environment as is seen for some powerful radio galaxies at low redshift, the environments provide sufficient pressure to confine the radio lobes. The weak gas emission is particularly interesting for 3C 184, where a gravitational arc is seen, suggesting the presence of a massive cluster. Here Chandra data complement the XMM-Newton measurements by spatially separating X-rays from the extended atmosphere, the nucleus and the small-scale radio source. For 3C 292 the X-ray-emitting gas has a temperature of ~2 keV and luminosity of 6.5E43 erg/s, characteristic of a poor cluster. In all three cases, structures where the magnetic-field strength can be estimated through combining measurements of radio-synchrotron and inverse-Compton-X-ray emission, are consistent with being in a state of minimum total energy. 3C 184 and 3C 292 (and possibly 3C 322) have a heavily absorbed component of nuclear emission of N_H ~ $ few 10^{23} cm^{-2}.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا