No Arabic abstract
We prove the local and global existence of solutions of the generalized micro-electromechanical system (MEMS) equation $u_t =Delta u+lambda f(x)/g(u)$, $u<1$, in $Omegatimes (0,infty)$, $u(x,t)=0$ on $partialOmegatimes (0,infty)$, $u(x,0)=u_0$ in $Omega$, where $OmegasubsetBbb{R}^n$ is a bounded domain, $lambda >0$ is a constant, $0le fin C^{alpha}(overline{Omega})$, $f otequiv 0$, for some constant $0<alpha<1$, $0<gin C^2((-infty,1))$ such that $g(s)le 0$ for any $s<1$ and $u_0in L^1(Omega)$ with $u_0le a<1$ for some constant $a$. We prove that there exists a constant $lambda^{ast}=lambda^{ast}(Omega, f,g)>0$ such that the associated stationary problem has a solution for any $0lelambda<lambda^*$ and has no solution for any $lambda>lambda^*$. We obtain comparison theorems for the generalized MEMS equation. Under a mild assumption on the initial value we prove the convergence of global solutions to the solution of the corresponding stationary elliptic equation as $ttoinfty$ for any $0lelambda<lambda^*$. We also obtain various conditions for the existence of a touchdown time $T>0$ for the solution $u$. That is a time $T>0$ such that $lim_{t earrow T}sup_{Omega}u(cdot,t)=1$.
In this paper, we study the existence of rotating and traveling-wave solutions for the generalized surface quasi-geostrophic (gSQG) equation. The solutions are obtained by maximization of the energy over the set of rearrangements of a fixed function. The rotating solutions take the form of co-rotating vortices with $N$-fold symmetry. The traveling-wave solutions take the form of translating vortex pairs. Moreover, these solutions constitute the desingularization of co-rotating $N$ point vortices and counter-rotating pairs. Some other quantitative properties are also established.
In this paper, we study the existence of global classical solutions to the generalized surface quasi-geostrophic equation. By using the variational method, we provide some new families of global classical solutions for to the generalized surface quasi-geostrophic equation. These solutions mainly consist of rotating solutions and travelling-wave solutions.
Let $Omegasubsetmathbb{R}^n$ be a $C^2$ bounded domain and $chi>0$ be a constant. We will prove the existence of constants $lambda_Ngelambda_N^{ast}gelambda^{ast}(1+chiint_{Omega}frac{dx}{1-w_{ast}})^2$ for the nonlocal MEMS equation $-Delta v=lam/(1-v)^2(1+chiint_{Omega}1/(1-v)dx)^2$ in $Omega$, $v=0$ on $1Omega$, such that a solution exists for any $0lelambda<lambda_N^{ast}$ and no solution exists for any $lambda>lambda_N$ where $lambda^{ast}$ is the pull-in voltage and $w_{ast}$ is the limit of the minimal solution of $-Delta v=lam/(1-v)^2$ in $Omega$ with $v=0$ on $1Omega$ as $lambda earrow lambda^{ast}$. We will prove the existence, uniqueness and asymptotic behaviour of the global solution of the corresponding parabolic nonlocal MEMS equation under various boundedness conditions on $lambda$. We also obtain the quenching behaviour of the solution of the parabolic nonlocal MEMS equation when $lambda$ is large.
By studying the linearization of contour dynamics equation and using implicit function theorem, we prove the existence of co-rotating and travelling global solutions for the gSQG equation, which extends the result of Hmidi and Mateu cite{HM} to $alphain[1,2)$. Moreover, we prove the $C^infty$ regularity of vortices boundary, and show the convexity of each vortices component.
Let $0le u_0(x)in L^1(R^2)cap L^{infty}(R^2)$ be such that $u_0(x) =u_0(|x|)$ for all $|x|ge r_1$ and is monotone decreasing for all $|x|ge r_1$ for some constant $r_1>0$ and ${ess}inf_{2{B}_{r_1}(0)}u_0ge{ess} sup_{R^2setminus B_{r_2}(0)}u_0$ for some constant $r_2>r_1$. Then under some mild decay conditions at infinity on the initial value $u_0$ we will extend the result of P. Daskalopoulos, M.A. del Pino and N. Sesum cite{DP2}, cite{DS}, and prove the collapsing behaviour of the maximal solution of the equation $u_t=Deltalog u$ in $R^2times (0,T)$, $u(x,0)=u_0(x)$ in $R^2$, near its extinction time $T=int_{R^2}u_0dx/4pi$.