Do you want to publish a course? Click here

Observation of the spin-based plasmonic effect in nanoscale structures

341   0   0.0 ( 0 )
 Added by Yuri Gorodetski
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observation of surface-plasmon phenomena that are dependent upon the handedness of the circularly polarized incident light (spin) is presented. The polarization-dependent near-field intensity distribution obtained in our experiment is attributed to the presence of a geometric phase arising from the interaction of light with an anisotropic and inhomogeneous nanoscale structure. A near-field vortex surface mode with a spin-dependent topological charge was obtained in a plasmonic microcavity. The remarkable phenomenon of polarization-sensitive focusing in a plasmonic structure was also demonstrated.



rate research

Read More

Spin defects in hexagonal boron nitride, and specifically the negatively charged boron vacancy (VB) centres, are emerging candidates for quantum sensing. However, the VB defects suffer from low quantum efficiency and as a result exhibit weak photoluminescence. In this work, we demonstrate a scalable approach to dramatically enhance the VB- emission by coupling to a plasmonic gap cavity. The plasmonic cavity is composed of a flat gold surface and a silver cube, with few-layer hBN flakes positioned in between. Employing these plasmonic cavities, we extracted two orders of magnitude in photoluminescence enhancement associated with a corresponding 2 fold enhancement in optically detected magnetic resonance contrast. The work will be pivotal to progress in quantum sensing employing 2D materials, and realisation of nanophotonic devices with spin defects in hexagonal boron nitride.
A giant thermal magnetoresistance is predicted for the electromagnetic transport of heat in magneto-optical plasmonic structures. In chains of InSb-Ag nanoparticles at room temperature, we found that the resistance can be increased by almost a factor of 2 with magnetic fields of 2 T. We show that this important change results from the strong spectral dependence of localized surface waves on the magnitude of the magnetic field.
The spin Hall effect of light (SHEL) is the photonic analogue of spin Hall effects occurring for charge carriers in solid-state systems. Typical examples of this intriguing phenomenon occur when a light beam refracts at an air-glass interface, or when it is projected onto an oblique plane, the latter effect being known as geometric SHEL. It amounts to a polarization-dependent displacement perpendicular to the plane of incidence. Here, we experimentally demonstrate the geometric SHEL for a light beam transmitted across an oblique polarizer. We find that the spatial intensity distribution of the transmitted beam depends on the incident state of polarization and its centroid undergoes a positional displacement exceeding one wavelength. This novel phenomenon is virtually independent from the material properties of the polarizer and, thus, reveals universal features of spin-orbit coupling.
We demonstrate spatially-resolved measurements of spontaneous and stimulated electron-photon interactions in nanoscale optical near fields using electron energy-loss spectroscopy (EELS), cathodoluminescence spectroscopy (CL), and photon-induced near-field electron microscopy (PINEM). Specifically, we study resonant surface plasmon modes that are tightly confined to the tip apexes of an Au nanostar, enabling a direct correlation of EELS, CL, and PINEM on the same physical structure at the nanometer length scale. Complemented by numerical electromagnetic boundary-element method calculations, we discuss the spontaneous and stimulated electron-photon interaction strength and spatial dependence of our EELS, CL and PINEM distributions. We demonstrate that in the limit of an isolated tip mode, spatial variations in the electron-near field coupling are fully determined by the modal electric field profile, irrespective of the spontaneous (in EELS and CL) or stimulated nature (in PINEM) of the process. Yet we show that coupling to the tip modes crucially depends on the incident electron energy with a maximum at a few keV, depending on the proximity of the interaction to the tip apex. Our results provide elementary insights into spontaneous and stimulated electron-light-matter interactions at the nanoscale that have key implications for research on (quantum) coherent optical phenomena in electron microscopy.
340 - Yanxia Cui , Yingran He , Yi Jin 2014
Electromagnetic absorbers have drawn increasing attention in many areas. A series of plasmonic and metamaterial structures can work as efficient narrow band absorbers due to the excitation of plasmonic or photonic resonances, providing a great potential for applications in designing selective thermal emitters, bio-sensing, etc. In other applications such as solar energy harvesting and photonic detection, the bandwidth of light absorbers is required to be quite broad. Under such a background, a variety of mechanisms of broadband/multiband absorption have been proposed, such as mixing multiple resonances together, exciting phase resonances, slowing down light by anisotropic metamaterials, employing high loss materials and so on.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا