Do you want to publish a course? Click here

Superfluid Heat Conduction and the Cooling of Magnetized Neutron Stars

123   0   0.0 ( 0 )
 Added by Sanjay Reddy
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superfluid neutron matter, called superfluid phonons (sPhs), can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to magnetic field when the magnetic field $B gsim 10^{13}$ G. At density $rho simeq 10^{12}-10^{14} $ g/cm$^3$ the conductivity due to sPhs is significantly larger than that due to lattice phonons and is comparable to electron conductivity when temperature $simeq 10^8$ K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction could show observationally discernible differences.



rate research

Read More

485 - A. Y. Potekhin 2003
We study the thermal structure of neutron stars with magnetized envelopes composed of accreted material, using updated thermal conductivities of plasmas in quantizing magnetic fields, as well as equation of state and radiative opacities for partially ionized hydrogen in strong magnetic fields. The relation between the internal and local surface temperatures is calculated and fitted by an analytic function of the internal temperature, magnetic field strength, angle between the field lines and the normal to the surface, surface gravity, and the mass of the accreted material. The luminosity of a neutron star with a dipole magnetic field is calculated for various values of the accreted mass, internal temperature, and magnetic field strength. Using these results, we simulate cooling of superfluid neutron stars with magnetized accreted envelopes. We consider slow and fast cooling regimes, paying special attention to very slow cooling of low-mass superfluid neutron stars. In the latter case, the cooling is strongly affected by the combined effect of magnetized accreted envelopes and neutron superfluidity in the stellar crust. Our results are important for interpretation of observations of isolated neutron stars hottest for their age, such as RX J0822-43 and PSR B1055-52.
Context: Many thermally emitting isolated neutron stars have magnetic fields larger than 10^13 G. A realistic cooling model that includes the presence of high magnetic fields should be reconsidered. Aims: We investigate the effects of anisotropic temperature distribution and Joule heating on the cooling of magnetized neutron stars. Methods: The 2D heat transfer equation with anisotropic thermal conductivity tensor and including all relevant neutrino emission processes is solved for realistic models of the neutron star interior and crust. Results: The presence of the magnetic field affects significantly the thermal surface distribution and the cooling history during both, the early neutrino cooling era and the late photon cooling era. Conclusions: There is a large effect of the Joule heating on the thermal evolution of strongly magnetized neutron stars. Both magnetic fields and Joule heating play a key role in keeping magnetars warm for a long time. Moreover, this effect is important for intermediate field neutron stars and should be considered in radio-quiet isolated neutron stars or high magnetic field radio-pulsars.
We present 2D simulations of the cooling of neutron stars with strong magnetic fields (B geq 10^{13} G). We solve the diffusion equation in axial symmetry including the state of the art microphysics that controls the cooling such as slow/fast neutrino processes, superfluidity, as well as possible heating mechanisms. We study how the cooling curves depend on the the magnetic field strength and geometry. Special attention is given to discuss the influence of magnetic field decay. We show that Joule heating effects are very large and in some cases control the thermal evolution. We characterize the temperature anisotropy induced by the magnetic field for the early and late stages of the evolution of isolated neutron stars.
Motivated by the recent gravitational wave detection by the LIGO-VIRGO observatories, we study the Love number and dimensionless tidal polarizability of highly magnetized stars. We also investigate the fundamental quasi-normal mode of neutron stars subject to high magnetic fields. To perform our calculations we use the chaotic field approximation and consider both nucleonic and hyperonic stars. As far as the fundamental mode is concerned, we conclude that the role played by the constitution of the stars is far more relevant than the intensity of the magnetic field and if massive stars are considered, the ones constituted by nucleons only present frequencies somewhat lower than the ones with hyperonic cores, a feature that can be used to point out the real internal structure of neutron stars. Moreover, our studies clearly indicate that strong magnetic fields play a crucial role in the deformability of low mass neutron stars, with possible consequences on the interpretation of the detected gravitational waves signatures.
We study the superfluid dynamics of the outer core of neutron stars by means of a hydrodynamic model made of a neutronic superfluid and a protonic superconductor, coupled by both the dynamic entrainment and the Skyrme SLy4 nucleon-nucleon interactions. The resulting nonlinear equations of motion are probed in the search for dynamical instabilities triggered by the relative motion of the superfluids that could be related to observed timing anomalies in pulsars. Through linear analysis, the origin and expected growth of the instabilities is explored for varying nuclear-matter density. Differently from previous findings, the dispersion of linear excitations in our model shows rotonic structures below the pair-breaking energy threshold, which lies at the origin of the dynamical instabilities, and could eventually lead to emergent vorticity along with modulations of the superfluid density.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا