Do you want to publish a course? Click here

Guaranteed Cost LQG Control of Uncertain Linear Quantum Stochastic Systems

158   0   0.0 ( 0 )
 Added by Ian Petersen
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

In this paper, we formulate and solve a guaranteed cost control problem for a class of uncertain linear stochastic quantum systems. For these quantum systems, a connection with an associated classical (non-quantum) system is first established. Using this connection, the desired guaranteed cost results are established. The theory presented is illustrated using an example from quantum optics.



rate research

Read More

This paper is concerned with quadratic-exponential functionals (QEFs) as risk-sensitive performance criteria for linear quantum stochastic systems driven by multichannel bosonic fields. Such costs impose an exponential penalty on quadratic functions of the quantum system variables over a bounded time interval, and their minimization secures a number of robustness properties for the system. We use an integral operator representation of the QEF, obtained recently, in order to compute its asymptotic infinite-horizon growth rate in the invariant Gaussian state when the stable system is driven by vacuum input fields. The resulting frequency-domain formulas express the QEF growth rate in terms of two spectral functions associated with the real and imaginary parts of the quantum covariance kernel of the system variables. We also discuss the computation of the QEF growth rate using homotopy and contour integration techniques and provide two illustrations including a numerical example with a two-mode oscillator.
This paper is concerned with multimode open quantum harmonic oscillators and quadratic-exponential functionals (QEFs) as quantum risk-sensitive performance criteria. Such systems are described by linear quantum stochastic differential equations driven by multichannel bosonic fields. We develop a finite-horizon expansion for the system variables using the eigenbasis of their two-point commutator kernel with noncommuting position-momentum pairs as coefficients. This quantum Karhunen-Loeve expansion is used in order to obtain a Girsanov type representation for the quadratic-exponential functions of the system variables. This representation is valid regardless of a particular system-field state and employs the averaging over an auxiliary classical Gaussian random process whose covariance operator is defined in terms of the quantum commutator kernel. We use this representation in order to relate the QEF to the moment-generating functional of the system variables. This result is also specified for the invariant multipoint Gaussian quantum state when the oscillator is driven by vacuum fields.
This paper is concerned with a risk-sensitive optimal control problem for a feedback connection of a quantum plant with a measurement-based classical controller. The plant is a multimode open quantum harmonic oscillator driven by a multichannel quantum Wiener process, and the controller is a linear time invariant system governed by a stochastic differential equation. The control objective is to stabilize the closed-loop system and minimize the infinite-horizon asymptotic growth rate of a quadratic-exponential functional (QEF) which penalizes the plant variables and the controller output. We combine a frequency-domain representation of the QEF growth rate, obtained recently, with variational techniques and establish first-order necessary conditions of optimality for the state-space matrices of the controller.
The purpose of this paper is to formulate and solve a H-infinity controller synthesis problem for a class of non-commutative linear stochastic systems which includes many examples of interest in quantum technology. The paper includes results on the class of such systems for which the quantum commutation relations are preserved (such a requirement must be satisfied in a physical quantum system). A quantum version of standard (classical) dissipativity results are presented and from this a quantum version of the Strict Bounded Real Lemma is derived. This enables a quantum version of the two Riccati solution to the H-infinity control problem to be presented. This result leads to controllers which may be realized using purely quantum, purely classical or a mixture of quantum and classical elements. This issue of physical realizability of the controller is examined in detail, and necessary and sufficient conditions are given. Our results are constructive in the sense that we provide explicit formulas for the Hamiltonian function and coupling operator corresponding to the controller.
Recently, there have been efforts towards understanding the sampling behaviour of event-triggered control (ETC), for obtaining metrics on its sampling performance and predicting its sampling patterns. Finite-state abstractions, capturing the sampling behaviour of ETC systems, have proven promising in this respect. So far, such abstractions have been constructed for non-stochastic systems. Here, inspired by this framework, we abstract the sampling behaviour of stochastic narrow-sense linear periodic ETC (PETC) systems via Interval Markov Chains (IMCs). Particularly, we define functions over sequences of state-measurements and interevent times that can be expressed as discounted cumulative sums of rewards, and compute bounds on their expected values by constructing appropriate IMCs and equipping them with suitable rewards. Finally, we argue that our results are extendable to more general forms of functions, thus providing a generic framework to define and study various ETC sampling indicators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا