Do you want to publish a course? Click here

Robust Recovery of Signals From a Structured Union of Subspaces

141   0   0.0 ( 0 )
 Added by Moshe Mishali
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

Traditional sampling theories consider the problem of reconstructing an unknown signal $x$ from a series of samples. A prevalent assumption which often guarantees recovery from the given measurements is that $x$ lies in a known subspace. Recently, there has been growing interest in nonlinear but structured signal models, in which $x$ lies in a union of subspaces. In this paper we develop a general framework for robust and efficient recovery of such signals from a given set of samples. More specifically, we treat the case in which $x$ lies in a sum of $k$ subspaces, chosen from a larger set of $m$ possibilities. The samples are modelled as inner products with an arbitrary set of sampling functions. To derive an efficient and robust recovery algorithm, we show that our problem can be formulated as that of recovering a block-sparse vector whose non-zero elements appear in fixed blocks. We then propose a mixed $ell_2/ell_1$ program for block sparse recovery. Our main result is an equivalence condition under which the proposed convex algorithm is guaranteed to recover the original signal. This result relies on the notion of block restricted isometry property (RIP), which is a generalization of the standard RIP used extensively in the context of compressed sensing. Based on RIP we also prove stability of our approach in the presence of noise and modelling errors. A special case of our framework is that of recovering multiple measurement vectors (MMV) that share a joint sparsity pattern. Adapting our results to this context leads to new MMV recovery methods as well as equivalence conditions under which the entire set can be determined efficiently.



rate research

Read More

250 - Zhongxing Sun , Wei Cui , 2021
This paper is concerned with the problem of recovering a structured signal from a relatively small number of corrupted random measurements. Sharp phase transitions have been numerically observed in practice when different convex programming procedures are used to solve this problem. This paper is devoted to presenting theoretical explanations for these phenomenons by employing some basic tools from Gaussian process theory. Specifically, we identify the precise locations of the phase transitions for both constrained and penalized recovery procedures. Our theoretical results show that these phase transitions are determined by some geometric measures of structure, e.g., the spherical Gaussian width of a tangent cone and the Gaussian (squared) distance to a scaled subdifferential. By utilizing the established phase transition theory, we further investigate the relationship between these two kinds of recovery procedures, which also reveals an optimal strategy (in the sense of Lagrange theory) for choosing the tradeoff parameter in the penalized recovery procedure. Numerical experiments are provided to verify our theoretical results.
We consider the phase retrieval problem for signals that belong to a union of subspaces. We assume that amplitude measurements of the signal of length $n$ are observed after passing it through a random $m times n$ measurement matrix. We also assume that the signal belongs to the span of a single $d$-dimensional subspace out of $R$ subspaces, where $dll n$. We assume the knowledge of all possible subspaces, but the true subspace of the signal is unknown. We present an algorithm that jointly estimates the phase of the measurements and the subspace support of the signal. We discuss theoretical guarantees on the recovery of signals and present simulation results to demonstrate the empirical performance of our proposed algorithm. Our main result suggests that if properly initialized, then $O(d+log R)$ random measurements are sufficient for phase retrieval if the unknown signal belongs to the union of $R$ low-dimensional subspaces.
312 - Zhongxing Sun , Wei Cui , 2019
This paper studies the problem of recovering a structured signal from a relatively small number of corrupted non-linear measurements. Assuming that signal and corruption are contained in some structure-promoted set, we suggest an extended Lasso to disentangle signal and corruption. We also provide conditions under which this recovery procedure can successfully reconstruct both signal and corruption.
111 - Jinchi Chen , Yulong Liu 2017
This paper studies the problem of accurately recovering a structured signal from a small number of corrupted sub-Gaussian measurements. We consider three different procedures to reconstruct signal and corruption when different kinds of prior knowledge are available. In each case, we provide conditions (in terms of the number of measurements) for stable signal recovery from structured corruption with added unstructured noise. Our results theoretically demonstrate how to choose the regularization parameters in both partially and fully penalized recovery procedures and shed some light on the relationships among the three procedures. The key ingredient in our analysis is an extended matrix deviation inequality for isotropic sub-Gaussian matrices, which implies a tight lower bound for the restricted singular value of the extended sensing matrix. Numerical experiments are presented to verify our theoretical results.
The nature of distributed computation has often been described in terms of the component operations of universal computation: information storage, transfer and modification. We review the first complete framework that quantifies each of these individual information dynamics on a local scale within a system, and describes the manner in which they interact to create non-trivial computation where the whole is greater than the sum of the parts. We describe the application of the framework to cellular automata, a simple yet powerful model of distributed computation. This is an important application, because the framework is the first to provide quantitative evidence for several important conjectures about distributed computation in cellular automata: that blinkers embody information storage, particles are information transfer agents, and particle collisions are information modification events. The framework is also shown to contrast the computations conducted by several well-known cellular automata, highlighting the importance of information coherence in complex computation. The results reviewed here provide important quantitative insights into the fundamental nature of distributed computation and the dynamics of complex systems, as well as impetus for the framework to be applied to the analysis and design of other systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا