Do you want to publish a course? Click here

Stable Recovery of Structured Signals From Corrupted Sub-Gaussian Measurements

112   0   0.0 ( 0 )
 Added by Yulong Liu
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

This paper studies the problem of accurately recovering a structured signal from a small number of corrupted sub-Gaussian measurements. We consider three different procedures to reconstruct signal and corruption when different kinds of prior knowledge are available. In each case, we provide conditions (in terms of the number of measurements) for stable signal recovery from structured corruption with added unstructured noise. Our results theoretically demonstrate how to choose the regularization parameters in both partially and fully penalized recovery procedures and shed some light on the relationships among the three procedures. The key ingredient in our analysis is an extended matrix deviation inequality for isotropic sub-Gaussian matrices, which implies a tight lower bound for the restricted singular value of the extended sensing matrix. Numerical experiments are presented to verify our theoretical results.



rate research

Read More

312 - Zhongxing Sun , Wei Cui , 2019
This paper studies the problem of recovering a structured signal from a relatively small number of corrupted non-linear measurements. Assuming that signal and corruption are contained in some structure-promoted set, we suggest an extended Lasso to disentangle signal and corruption. We also provide conditions under which this recovery procedure can successfully reconstruct both signal and corruption.
250 - Zhongxing Sun , Wei Cui , 2021
This paper is concerned with the problem of recovering a structured signal from a relatively small number of corrupted random measurements. Sharp phase transitions have been numerically observed in practice when different convex programming procedures are used to solve this problem. This paper is devoted to presenting theoretical explanations for these phenomenons by employing some basic tools from Gaussian process theory. Specifically, we identify the precise locations of the phase transitions for both constrained and penalized recovery procedures. Our theoretical results show that these phase transitions are determined by some geometric measures of structure, e.g., the spherical Gaussian width of a tangent cone and the Gaussian (squared) distance to a scaled subdifferential. By utilizing the established phase transition theory, we further investigate the relationship between these two kinds of recovery procedures, which also reveals an optimal strategy (in the sense of Lagrange theory) for choosing the tradeoff parameter in the penalized recovery procedure. Numerical experiments are provided to verify our theoretical results.
We propose and analyze a solution to the problem of recovering a block sparse signal with sparse blocks from linear measurements. Such problems naturally emerge inter alia in the context of mobile communication, in order to meet the scalability and low complexity requirements of massive antenna systems and massive machine-type communication. We introduce a new variant of the Hard Thresholding Pursuit (HTP) algorithm referred to as HiHTP. We provide both a proof of convergence and a recovery guarantee for noisy Gaussian measurements that exhibit an improved asymptotic scaling in terms of the sampling complexity in comparison with the usual HTP algorithm. Furthermore, hierarchically sparse signals and Kronecker product structured measurements naturally arise together in a variety of applications. We establish the efficient reconstruction of hierarchically sparse signals from Kronecker product measurements using the HiHTP algorithm. Additionally, we provide analytical results that connect our recovery conditions to generalized coherence measures. Again, our recovery results exhibit substantial improvement in the asymptotic sampling complexity scaling over the standard setting. Finally, we validate in numerical experiments that for hierarchically sparse signals, HiHTP performs significantly better compared to HTP.
127 - Xu Zhang , Wei Cui , 2017
This paper considers the problem of recovering a structured signal from a relatively small number of noisy measurements with the aid of a similar signal which is known beforehand. We propose a new approach to integrate prior information into the standard recovery procedure by maximizing the correlation between the prior knowledge and the desired signal. We then establish performance guarantees (in terms of the number of measurements) for the proposed method under sub-Gaussian measurements. Specific structured signals including sparse vectors, block-sparse vectors, and low-rank matrices are also analyzed. Furthermore, we present an interesting geometrical interpretation for the proposed procedure. Our results demonstrate that if prior information is good enough, then the proposed approach can (remarkably) outperform the standard recovery procedure. Simulations are provided to verify our results.
77 - Xiao Lv , Wei Cui , Yulong Liu 2021
In this paper, we characterize data-time tradeoffs of the proximal-gradient homotopy method used for solving penalized linear inverse problems under sub-Gaussian measurements. Our results are sharp up to an absolute constant factor. We also show that, in the absence of the strong convexity assumption, the proximal-gradient homotopy update can achieve a linear rate of convergence when the number of measurements is sufficiently large. Numerical simulations are provided to verify our theoretical results. All proofs are included in the online full version of this paper.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا