No Arabic abstract
We introduce a class of 1D models mimicking a single-lane bridge with two junctions and two particle species driven in opposite directions. The model exhibits spontaneous symmetry breaking (SSB) for a range of injection/extraction rates. In this phase the steady state currents of the two species are not equal. Moreover there is a co-existence region in which the symmetry broken phase co-exists with a symmetric phase. Along a path in which the extraction rate is varied, keeping the injection rate fixed and large, hysteresis takes place. The mean field phase diagram is calculated and supporting Monte-Carlo simulations are presented. One of the transition lines exhibits a kink, a feature which cannot exist in transition lines of equilibrium phase transitions.
First we consider a unidirectional flux omega_bar of vehicles each of which is characterized by its `natural velocity v drawn from a distribution P(v). The traffic flow is modeled as a collection of straight `world lines in the time-space plane, with overtaking events represented by a fixed queuing time tau imposed on the overtaking vehicle. This geometrical model exhibits platoon formation and allows, among many other things, for the calculation of the effective average velocity w=phi(v) of a vehicle of natural velocity v. Secondly, we extend the model to two opposite lanes, A and B. We argue that the queuing time tau in one lane is determined by the traffic density in the opposite lane. On the basis of reasonable additional assumptions we establish a set of equations that couple the two lanes and can be solved numerically. It appears that above a critical value omega_bar_c of the control parameter omega_bar the symmetry between the lanes is spontaneously broken: there is a slow lane where long platoons form behind the slowest vehicles, and a fast lane where overtaking is easy due to the wide spacing between the platoons in the opposite direction. A variant of the model is studied in which the spatial vehicle density rho_bar rather than the flux omega_bar is the control parameter. Unequal fluxes omega_bar_A and omega_bar_B in the two lanes are also considered. The symmetry breaking phenomenon exhibited by this model, even though no doubt hard to observe in pure form in real-life traffic, nevertheless indicates a tendency of such traffic.
Spontaneous symmetry breaking (SSB) is a key concept in physics that for decades has played a crucial role in the description of many physical phenomena in a large number of different areas, like particle physics, cosmology, and condensed-matter physics. SSB is thus an ubiquitous concept connecting several, both high and low energy, areas of physics and many textbooks describe its basic features in great detail. However, to study the dynamics of symmetry breaking in the laboratory is extremely difficult. In condensed-matter physics, for example, tiny external disturbances cause a preference for the breaking of the symmetry in a particular configuration and typically those disturbances cannot be avoided in experiments. Notwithstanding these complications, here we describe an experiment, in which we directly observe the spontaneous breaking of the temporal phase of a driven system with respect to the drive into two distinct values differing by $pi$.
The ferromagnetic transition in the Ising model is the paradigmatic example of ergodicity breaking accompanied by symmetry breaking. It is routinely assumed that the thermodynamic limit is taken with free or periodic boundary conditions. More exotic symmetry-preserving boundary conditions, like cylindrical antiperiodic, are less frequently used for special tasks, such as the study of phase coexistence or the roughening of an interface. Here we show, instead, that when the thermodynamic limit is taken with these boundary conditions, a novel type of transition takes place below $T_c$ (the usual Ising transition temperature) without breaking neither ergodicity nor symmetry. Then, the low temperature phase is characterized by a regime (condensation) of strong magnetizations fluctuations which replaces the usual ferromagnetic ordering. This is due to critical correlations perduring for all T below Tc. The argument is developed exactly in the $d=1$ case and numerically in the d=2 case.
We investigate a recently proposed non-Markovian random walk model characterized by loss of memories of the recent past and amnestically induced persistence. We report numerical and analytical results showing the complete phase diagram, consisting of 4 phases, for this system: (i) classical nonpersistence, (ii) classical persistence (iii) log-periodic nonpersistence and (iv) log-periodic persistence driven by negative feedback. The first two phases possess continuous scale invariance symmetry, however log-periodicity breaks this symmetry. Instead, log-periodic motion satisfies discrete scale invariance symmetry, with complex rather than real fractal dimensions. We find for log-periodic persistence evidence not only of statistical but also of geometric self-similarity.
We discuss the charge and the spin tunneling currents between two Bardeen-Cooper-Schrieffer (BCS) superconductors, where one density of states is spin-split. In the presence of a large temperature bias across the junction, we predict the generation of a spin-polarized thermoelectric current. This thermo-spin effect is the result of a spontaneous particle-hole symmetry breaking in the absence of a polarizing tunnel barrier. The two spin components, which move in opposite directions, generate a spin current larger than the purely polarized case when the thermo-active component dominates over the dissipative one.