We present the accurate measurement of the frequency of the $7S-7P$ laser-trapping transition for three francium isotopes. Our approach is based on an interferometric comparison to deduce the unknown laser frequency from a secondary laser frequency-standard. After careful investigation of systematics, with samples of about 100 atoms the final accuracy reaches 8 MHz, an order of magnitude better than the best previous measurement for $^{210}$Fr, and opens the way to improved tests of the theoretical computation of Fr atomic structure.
High-power and narrow-linewidth laser light is a vital tool for atomic physics, being used for example in laser cooling and trapping and precision spectroscopy. Here we produce Watt-level laser radiation at 457.49 nm and 460.86 nm of respective relevance for the cooling transitions of cadmium and strontium atoms. This is achieved via the frequency doubling of a kHz-linewidth vertical-external-cavity surface-emitting laser (VECSEL), which is based on a novel gain chip design enabling lasing at > 2 W in the 915-928 nm region. Following an additional doubling stage, spectroscopy of the $^1S_0to{}^1P_1$ cadmium transition at 228.89 nm is performed on an atomic beam, with all the transitions from all eight natural isotopes observed in a single continuous sweep of more than 4 GHz in the deep ultraviolet. The absolute value of the transition frequency of Cd-114 and the isotope shifts relative to this transition are determined, with values for some of these shifts provided for the first time
About 300 experiments have tried to determine the value of the Newtonian gravitational constant, G, so far, but large discrepancies in the results have made it impossible to know its value precisely. The weakness of the gravitational interaction and the impossibility of shielding the effects of gravity make it very difficult to measure G while keeping systematic effects under control. Most previous experiments performed were based on the torsion pendulum or torsion balance scheme as in the experiment by Cavendish in 1798, and in all cases macroscopic masses were used. Here we report the precise determination of G using laser-cooled atoms and quantum interferometry. We obtain the value G=6.67191(99) x 10^(-11) m^3 kg^(-1) s^(-2) with a relative uncertainty of 150 parts per million (the combined standard uncertainty is given in parentheses). Our value differs by 1.5 combined standard deviations from the current recommended value of the Committee on Data for Science and Technology. A conceptually different experiment such as ours helps to identify the systematic errors that have proved elusive in previous experiments, thus improving the confidence in the value of G. There is no definitive relationship between G and the other fundamental constants, and there is no theoretical prediction for its value, against which to test experimental results. Improving the precision with which we know G has not only a pure metrological interest, but is also important because of the key role that G has in theories of gravitation, cosmology, particle physics and astrophysics and in geophysical models.
Weak interactions within a nucleus generate a nuclear spin dependent parity violating electromagnetic moment; the anapole moment. In heavy nuclei, the anapole moment is the dominant contribution to spin-dependent atomic parity violation. We analyze a method to measure the nuclear anapole moment through the electric dipole transition it induces between hyperfine states of the ground level. The method requires tight confinement of the atoms to position them at the anti-node of a standing wave driving the anapole-induced E1 transiton. We explore the necessary limits in the number of atoms, excitation fields, trap type, interrogation method, and systematic tests necessary for such measurements in francium, the heaviest alkali.
We present a modular rack-mounted laser system for the cooling and manipulation of neutral rubidium atoms which has been developed for a portable gravimeter based on atom interferometry that will be capable of performing high precision gravity measurements directly at sites of geophysical interest. This laser system is constructed in a compact and mobile design so that it can be transported to different locations, yet it still offers improvements over many conventional laboratory-based laser systems. Our system is contained in a standard 19 rack and emits light at five different frequencies simultaneously on up to 12 fibre ports at a total output power of 800 mW. These frequencies can be changed and switched between ports in less than a microsecond. The setup includes two phase-locked diode lasers with a phase noise spectral density of less than 1 mu rad/sqrt(Hz) in the frequency range in which our gravimeter is most sensitive to noise. We characterize this laser system and evaluate the performance limits it imposes on an interferometer.
The cesium 6S_1/2 scalar dipole polarizability alpha_0 has been determined from the time-of-flight of laser cooled and launched cesium atoms traveling through an electric field. We find alpha_0 = 6.611+-0.009 x 10^-39 C m^2/V= 59.42+-0.08 x 10^-24 cm^3 = 401.0+-0.6 a_0^3. The 0.14% uncertainty is a factor of fourteen improvement over the previous measurement. Values for the 6P_1/2 and 6P_3/2 lifetimes and the 6S_1/2 cesium-cesium dispersion coefficient C_6 are determined from alpha_0 using the procedure of Derevianko and Porsev [Phys. Rev. A 65, 053403 (2002)].