Do you want to publish a course? Click here

Discovery of a Giant Lya Emitter Near the Reionization Epoch

109   0   0.0 ( 0 )
 Added by Masami Ouchi
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of a giant Lya emitter (LAE) with a Spitzer/IRAC counterpart near the reionization epoch at z=6.595. The giant LAE is found from the extensive 1 deg^2 Subaru narrow-band survey for z=6.6 LAEs in the Subaru/XMM-Newton Deep Survey (SXDS) field, and subsequently identified by deep spectroscopy of Keck/DEIMOS and Magellan/IMACS. Among our 207 LAE candidates, this LAE is not only the brightest narrow-band object with L(Lya) = 3.9+/-0.2 x 10^43 erg/s in our survey volume of 10^6 Mpc^3, but also a spatially extended Lya nebula with the largest isophotal area whose major axis is at least ~3. This object is more likely to be a large Lya nebula with a size of >~17 kpc than to be a strongly-lensed galaxy by a foreground object. Our Keck spectrum with medium-high spectral and spatial resolutions suggests that the velocity width is v(FWHM)=251+/-21 km/s, and that the line-center velocity changes by ~60 km/s in a 10-kpc range. The stellar mass and star-formation rate are estimated to be 0.9-5.0 x 10^10 Mo and >34 Mo/yr, respectively, from the combination of deep optical to infrared images of Subaru, UKIDSS-Ultra Deep Survey, and Spitzer/IRAC. Although the nature of this object is not yet clearly understood, this could be an important object for studying cooling clouds accreting onto a massive halo, or forming-massive galaxies with significant outflows contributing to cosmic reionization and metal enrichment of inter-galactic medium.



rate research

Read More

We present the results of structure analyses for a large sample of 426 Lya emitters (LAEs) at z~2.2 that are observed with HST/ACS and WFC3-IR by deep extra-galactic legacy surveys. We confirm that the merger fraction and the average ellipticity of LAEs stellar component are 10-30 % and 0.4-0.6, respectively, that are comparable with previous study results. We successfully identify that some LAEs have a spatial offset between Lya and stellar-continuum emission peaks, d_Lya, by ~2.5-4 kpc beyond our statistical errors. To uncover the physical origin of strong Lya emission found in LAEs, we investigate Lya equivalent width (EW) dependences of these three structural parameters, merger fraction, d_Lya, and ellipticity of stellar distribution in the range of EW(Lya)=20-250A. Contrary to expectations, we find that merger fraction does not significantly increase with Lya EW. We reveal an anti-correlation between d_Lya and EW(Lya) by Kolmogorov-Smirnov (KS) test. There is a trend that the LAEs with a large Lya EW have a small ellipticity. This is consistent with the recent theoretical claims that Lya photons can more easily escape from face-on disks having a small ellipticity, due to less inter-stellar gas along the line of sight, although our KS test indicates that this trend is not statistically significant. Our results of Lya-EW dependence generally support the idea that an HI column density is a key quantity determining Lya emissivity.
Detection of the redshifted 21cm-line signal from neutral hydrogen in the intergalactic medium (IGM) during the Epoch of Reionization (EoR) is complicated by intense foregrounds such as galactic synchrotron and extragalactic radio galaxies. The 21cm-Lyman-$alpha$ emitter(LAE) cross-correlation is one of the tools available to reduce the foreground effects because the foreground emission from such radio sources is statistically independent of LAE distribution. LAE surveys during the EoR at redshifts $z=6.6$ and $7.3$ are ongoing by the Subaru Hyper Suprime-Cam (HSC). Additionally, Prime Focus Spectrograph (PFS) will provide precise redshift information of the LAEs discovered by the HSC survey. In this paper, we investigate the detectability of the 21cm signal with the 21cm-LAE cross-correlation by using our improved reionization simulations. We also focus on the error budget and evaluate it quantitatively in order to consider a strategy to improve the signal-to-noise ratio. In addition, we explore an expansion of the LAE survey to suggest optimal survey parameters and show a potential to measure a characteristic size of ionized bubbles via the turnover scale of the cross-power spectrum. As a result, we find that the Murchison Widefield Array (MWA) has ability to detect the cross-power spectrum signal on large scales by combining LAE Deep field survey of HSC. We also show that the sensitivity is improved dramatically at small scales by adding redshift information from the PFS measurements. The Square Kilometre Array (SKA) has a potential to measure the turnover scale with an accuracy of $6times10^{-3}~{rm Mpc^{-1}}$.
Discovery of the cosmic reionization epoch would represent a significant milestone in cosmology. We present Keck spectroscopy of the quasar SDSS 1044-0125, at z = 5.73. The spectrum shows a dramatic increase in the optical depth at observed wavelengths lambda >~7550 A, corresponding to z_abs >~ 5.2. Only a few small, narrow transmission regions are present in the spectrum beyond that point, and out to the redshifts where the quasar signal begins. We interpret this result as a signature of the trailing edge of the cosmic reionization epoch, which we estimate to occur around <z> ~ 6 (as indeed confirmed by subsequent observations by Becker et al.), and extending down to z ~ 5.2. This behavior is expected in the modern theoretical models of the reionization era, which predict a patchy and gradual onset of reionization. The remaining transmission windows we see may correspond to the individual reionization bubbles (Stromgren spheres) embedded in a still largely neutral intergalactic medium, intersected by the line of sight to the quasar. Future spectroscopic observations of quasars at comparable or larger redshifts will provide a more detailed insight into the structure and extent of the reionization era.
117 - Darach Watson 2015
Candidates for the modest galaxies that formed most of the stars in the early universe, at redshifts $z > 7$, have been found in large numbers with extremely deep restframe-UV imaging. But it has proved difficult for existing spectrographs to characterise them in the UV. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant UV-selected galaxy detected in dust emission is only at $z = 3.25$, and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at this early epoch. Here we report thermal dust emission from an archetypal early universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be $z = 7.5pm0.2$ from a spectroscopic detection of the Ly{alpha} break. A1689-zD1 is representative of the star-forming population during reionisation, with a total star-formation rate of about 12M$_odot$ yr$^{-1}$. The galaxy is highly evolved: it has a large stellar mass, and is heavily enriched in dust, with a dust-to-gas ratio close to that of the Milky Way. Dusty, evolved galaxies are thus present among the fainter star-forming population at $z > 7$, in spite of the very short time since they first appeared.
We present Lya luminosity function (LF), clustering measurements, and Lya line profiles based on the largest sample, to date, of 207 Lya emitters (LAEs) at z=6.6 on the 1-deg^2 sky of Subaru/XMM-Newton Deep Survey (SXDS) field. Our z=6.6 Lya LF including cosmic variance estimates yields the best-fit Schechter parameters of phi*=8.5 +3.0/-2.2 x10^(-4) Mpc^(-3) and L*(Lya)=4.4 +/-0.6 x10^42 erg s^(-1) with a fixed alpha=-1.5, and indicates a decrease from z=5.7 at the >~90% confidence level. However, this decrease is not large, only =~30% in Lya luminosity, which is too small to be identified in the previous studies. A clustering signal of z=6.6 LAEs is detected for the first time. We obtain the correlation length of r_0=2-5 h^(-1) Mpc and bias of b=3-6, and find no significant boost of clustering amplitude by reionization at z=6.6. The average hosting dark halo mass inferred from clustering is 10^10-10^11 Mo, and duty cycle of LAE population is roughly ~1% albeit with large uncertainties. The average of our high-quality Keck/DEIMOS spectra shows an FWHM velocity width of 251 +/-16 km s^(-1). We find no large evolution of Lya line profile from z=5.7 to 6.6, and no anti-correlation between Lya luminosity and line width at z=6.6. The combination of various reionization models and our observational results about the LF, clustering, and line profile indicates that there would exist a small decrease of IGMs Lya transmission owing to reionization, but that the hydrogen IGM is not highly neutral at z=6.6. Our neutral-hydrogen fraction constraint implies that the major reionization process took place at z>~7.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا