Do you want to publish a course? Click here

On the Threshold of the Reionization Epoch

76   0   0.0 ( 0 )
 Added by George Djorgovski
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

Discovery of the cosmic reionization epoch would represent a significant milestone in cosmology. We present Keck spectroscopy of the quasar SDSS 1044-0125, at z = 5.73. The spectrum shows a dramatic increase in the optical depth at observed wavelengths lambda >~7550 A, corresponding to z_abs >~ 5.2. Only a few small, narrow transmission regions are present in the spectrum beyond that point, and out to the redshifts where the quasar signal begins. We interpret this result as a signature of the trailing edge of the cosmic reionization epoch, which we estimate to occur around <z> ~ 6 (as indeed confirmed by subsequent observations by Becker et al.), and extending down to z ~ 5.2. This behavior is expected in the modern theoretical models of the reionization era, which predict a patchy and gradual onset of reionization. The remaining transmission windows we see may correspond to the individual reionization bubbles (Stromgren spheres) embedded in a still largely neutral intergalactic medium, intersected by the line of sight to the quasar. Future spectroscopic observations of quasars at comparable or larger redshifts will provide a more detailed insight into the structure and extent of the reionization era.



rate research

Read More

158 - Rajat M. Thomas 2010
Simulations estimating the differential brightness temperature of the redshifted 21-cm from the epoch of reionization (EoR) often assume that the spin temperature is decoupled from the background CMB temperature and is much larger than it. Although a valid assumption towards the latter stages of the reionization process, it does not necessarily hold at the earlier epochs. Violation of this assumption will lead to fluctuations in differential brightness temperature that are neither driven by density fluctuations nor by HII regions. Therefore, it is vital to calculate the spin temperature self-consistently by treating the Lyman-alpha and collisional coupling of spin temperature to the kinetic temperature. In this paper we develop an extension to the BEARS algorithm, originally developed to model reionization history, to include these coupling effects. Here we simulate the effect in ionization and heating for three models in which the reionization is driven by stars, miniqsos or a mixture of both.We also perform a number of statistical tests to quantify the imprint of the self-consistent inclusion of the spin temperature decoupling from the CMB. We find that the evolution of the spin temperature has an impact on the measured signal specially at redshifts higher than 10 and such evolution should be taken into account when one attempts to interpret the observational data.
93 - Wenxiao Xu , Yidong Xu , Bin Yue 2019
The neutral hydrogen (HI) and its 21 cm line are promising probes to the reionization process of the intergalactic medium (IGM). To use this probe effectively, it is imperative to have a good understanding on how the neutral hydrogen traces the underlying matter distribution. Here we study this problem using semi-numerical modeling by combining the HI in the IGM and the HI from halos during the epoch of reionization (EoR), and investigate the evolution and the scale-dependence of the neutral fraction bias as well as the 21 cm line bias. We find that the neutral fraction bias on large scales is negative during reionization, and its absolute value on large scales increases during the early stage of reionization and then decreases during the late stage. During the late stage of reionization, there is a transition scale at which the HI bias transits from negative on large scales to positive on small scales, and this scale increases as the reionization proceeds to the end.
78 - Adam Lidz 2015
A major goal of observational and theoretical cosmology is to observe the largely unexplored time period in the history of our universe when the first galaxies form, and to interpret these measurements. Early galaxies dramatically impacted the gas around them in the surrounding intergalactic medium (IGM) by photoionzing the gas during the Epoch of Reionization (EoR). This epoch likely spanned an extended stretch in cosmic time: ionized regions formed and grew around early generations of galaxies, gradually filling a larger and larger fraction of the volume of the universe. At some time -- thus far uncertain, but within the first billion years or so after the big bang -- essentially the entire volume of the universe became filled with ionized gas. The properties of the IGM provide valuable information regarding the formation time and nature of early galaxy populations, and many approaches for studying the first luminous sources are hence based on measurements of the surrounding intergalactic gas. The prospects for improved reionization-era observations of the IGM and early galaxy populations over the next decade are outstanding. Motivated by this, we review the current state of models of the IGM during reionization. We focus on a few key aspects of reionization-era phenomenology and describe: the redshift evolution of the volume-averaged ionization fraction, the properties of the sources and sinks of ionizing photons, along with models describing the spatial variations in the ionization fraction, the ultraviolet radiation field, the temperature of the IGM, and the gas density distribution.
97 - V. Bosch-Ramon 2018
The reionization of the Universe ends the dark ages that started after the recombination era. In the case of H, reionization finishes around $zsim 6$. Faint star-forming galaxies are the best candidate sources of the H-ionizing radiation, although active galactic nuclei may have also contributed. We have explored whether the termination regions of the jets from active galactic nuclei may have contributed significantly to the ionization of H in the late reionization epoch, around $zsim 6-7$. We assumed that, as it has been proposed, active galactic nuclei at $zsim 6$ may have presented a high jet fraction, accretion rate, and duty cycle, and that non-thermal electrons contribute significantly to the pressure of jet termination regions. Empirical black-hole mass functions were adopted to characterize the population of active galactic nuclei. From all this, estimates were derived for the isotropic H-ionizing radiation produced in the jet termination regions, at $zsim 6$, through inverse Compton scattering off CMB photons. We find that the termination regions of the jets of active galactic nuclei may have radiated most of their energy in the form of H-ionizing radiation at $zsim 6$. For typical black-hole mass functions at that redshift, under the considered conditions (long-lasting, common, and very active galactic nuclei with jets), the contribution of these jets to maintain (and possibly enhance) the ionization of H may have been non-negligible. We conclude that the termination regions of jets from active galactic nuclei could have had a significant role in the reionization of the Universe at $zgtrsim 6$.
Nebular emission lines associated with galactic HII regions carry information about both physical properties of the ionised gas and the source of ionising photons as well as providing the opportunity of measuring accurate redshifts and thus distances once a cosmological model is assumed. While nebular line emission has been extensively studied at lower redshift there are currently only few constraints within the epoch of reionisation (EoR, $z>6$), chiefly due to the lack of sensitive near-IR spectrographs. However, this will soon change with the arrival of the Webb Telescope providing sensitive near-IR spectroscopy covering the rest-frame UV and optical emission of galaxies in the EoR. In anticipation of Webb we combine the large cosmological hydrodynamical simulation Bluetides with photoionisation modelling to predict the nebular emission line properties of galaxies at $z=8to 13$. We find good agreement with the, albeit limited, existing direct and indirect observational constraints on equivalent widths though poorer agreement with luminosity function constraints.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا