Do you want to publish a course? Click here

Non-perturbative effective interactions from fluxes

228   0   0.0 ( 0 )
 Added by Marco Billo'
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Motivated by possible implications on the problem of moduli stabilization and other phenomenological aspects, we study D-brane instanton effects in flux compactifications. We focus on a local model and compute non-perturbative interactions generated by gauge and stringy instantons in a N = 1 quiver theory with gauge group U(N_0) x U(N_1) and matter in the bifundamentals. This model is engineered with fractional D3-branes at a C^3/(Z_2 x Z_2) singularity, and its non-perturbative sectors are described by introducing fractional D-instantons. We find a rich variety of instanton-generated F- and D-term interactions, ranging from superpotentials and Beasley-Witten like multi-fermion terms to non-supersymmetric flux-induced instanton interactions.



rate research

Read More

254 - D.R. Entem , J.A. Oller 2021
Chiral Effective Field Theory ($chi$EFT) has been extensively used to study the $NN$ interaction during the last three decades. In Effective Field Theories (EFTs) the renormalization is performed order by order including the necessary counter terms. Due to the strong character of the $NN$ interaction a non-perturbative resummation is needed. In this work we will review some of the methods proposed to completely remove cutoff dependencies. The methods covered are renormalization with boundary conditions, renormalization with one counter term in momentum space (or equivalently substractive renormalization) and the exact $N/D$ method. The equivalence between the methods up to one renormalization condition will be checked showing results in the $NN$ system. The exact $N/D$ method allows to go beyond the others, and using a toy model it is shown how it can renormalize singular repulsive interactions.
Recently, Berenstein et al. have proposed a duality between a sector of N=4 super-Yang-Mills theory with large R-charge J, and string theory in a pp-wave background. In the limit considered, the effective t Hooft coupling has been argued to be lambda=g_{YM}^2 N/J^2=1/(mu p^+ alpha)^2. We study Yang-Mills theory at small lambda (large mu) with a view to reproducing string interactions. We demonstrate that the effective genus counting parameter of the Yang-Mills theory is g_2^2=J^4/N^2=(4 pi g_s)^2 (mu p^+ alpha)^4, the effective two-dimensional Newton constant for strings propagating on the pp-wave background. We identify g_2 sqrt{lambda} as the effective coupling between a wide class of excited string states on the pp-wave background. We compute the anomalous dimensions of BMN operators at first order in g_2^2 and lambda and interpret our result as the genus one mass renormalization of the corresponding string state. We postulate a relation between the three-string vertex function and the gauge theory three-point function and compare our proposal to string field theory. We utilize this proposal, together with quantum mechanical perturbation theory, to recompute the genus one energy shift of string states, and find precise agreement with our earlier computation.
We illustrate the correspondence between the N=1 superstring compactifications with fluxes, the N=4 gauged supergravities and the superpotential and Kahler potential of the effective N=1 supergravity in four dimensions. In particular we derive, in the presence of general fluxes, the effective N=1 supergravity theory associated to the type IIA orientifolds with D6 branes, compactified on $T^6/(Z_2 times Z_2)$. We construct explicit examples with different features: in particular, new IIA no-scale models, new models with cosmological interest and a model which admits a supersymmetric AdS$_4$ vacuum with all seven main moduli ($S, T_A, U_A,A=1,2,3$) stabilized.
53 - Javier G. Subils 2021
In this thesis we investigate some aspects of quantum field theories from a holographic perspective. In the first chapters we examine in detail a one-paremeter family of three-dimensional gauge theories by means of their type IIA gravity duals. We analyse features such as their confinement nature, spectrum, entanglement properties or thermal phase transitions. This family interpolates between quasi-conformal and quasi-confining physics. In the last two chapters, we use bottom-up models to study complex conformal field theories and transport properties of dense QCD respectively.
We consider examples of D=4 string theory vacua which, although globally non-geometric, admit a local description in terms of D=10 supergravity backgrounds. We analyze such backgrounds and find that the supersymmetry spinors vary non-trivially along the internal manifold, reproducing the interpolating supergravity solutions found by Frey and Grana. Finally, we propose a simple, local expression for non-geometric fluxes in terms of the internal spinors of the compactification.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا