No Arabic abstract
We illustrate the correspondence between the N=1 superstring compactifications with fluxes, the N=4 gauged supergravities and the superpotential and Kahler potential of the effective N=1 supergravity in four dimensions. In particular we derive, in the presence of general fluxes, the effective N=1 supergravity theory associated to the type IIA orientifolds with D6 branes, compactified on $T^6/(Z_2 times Z_2)$. We construct explicit examples with different features: in particular, new IIA no-scale models, new models with cosmological interest and a model which admits a supersymmetric AdS$_4$ vacuum with all seven main moduli ($S, T_A, U_A,A=1,2,3$) stabilized.
Based on the correspondence between the N = 1 superstring compactifications with fluxes and the N = 4 gauged supergravities, we study effective N = 1 four-dimensional supergravity potentials arising from fluxes and gaugino condensates in the framework of orbifold limits of (generalized) Calabi-Yau compactifications. We give examples in heterotic and type II orientifolds in which combined fluxes and condensates lead to vacua with small supersymmetry breaking scale. We clarify the respective roles of fluxes and condensates in supersymmetry breaking, and analyze the scaling properties of the gravitino mass.
In this paper we compute gaugino and scalar condensates in N=1 supersymmetric gauge theories with and without massive adjoint matter, using localization formulae over the multi--instanton moduli space. Furthermore we compute the chiral ring relations among the correlators of the $N=1^*$ theory and check this result against the multi-instanton computation finding agreement.
In this letter we compute the exact effective superpotential of {cal N}=1 U(N) supersymmetric gauge theories with N_f fundamental flavors and an arbitrary tree-level polynomial superpotential for the adjoint Higgs field. We use the matrix model approach in the maximally confinig phase. When restricted to the case of a tree-level even polynomial superpotential, our computation reproduces the known result of the SU(N) theory.
We present a detailed study of D-brane superpotentials depending on several open and closed-string deformations. The relative cohomology group associated with the brane defines a generalized hypergeometric GKZ system which determines the off-shell superpotential and its analytic properties under deformation. Explicit expressions for the N=1 superpotential for families of type II/F-theory compactifications are obtained for a list of multi-parameter examples. Using the Hodge theoretic approach to open-string mirror symmetry, we obtain new predictions for integral disc invariants in the A model instanton expansion. We study the behavior of the brane vacua under extremal transitions between different Calabi-Yau spaces and observe that the web of Calabi-Yau vacua remains connected for a particular class of branes.
Using the generalized Konishi anomaly (GKA) equations, we derive the effective superpotential of four-dimensional N=1 supersymmetric SU(n) gauge theory with n+2 fundamental flavors. We find, however, that the GKA equations are only integrable in the Seiberg dual description of the theory, but not in the direct description of the theory. The failure of integrability in the direct, strongly coupled, description suggests the existence of non-perturbative corrections to the GKA equations.