Do you want to publish a course? Click here

Coplanar Waveguide Resonators for Circuit Quantum Electrodynamics

256   0   0.0 ( 0 )
 Added by Martin G\\\"oppl
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have designed and fabricated superconducting coplanar waveguide resonators with fundamental frequencies from 2 to $9 rm{GHz}$ and loaded quality factors ranging from a few hundreds to a several hundred thousands reached at temperatures of $20 rm{mK}$. The loaded quality factors are controlled by appropriately designed input and output coupling capacitors. The measured transmission spectra are analyzed using both a lumped element model and a distributed element transmission matrix method. The experimentally determined resonance frequencies, quality factors and insertion losses are fully and consistently characterized by the two models for all measured devices. Such resonators find prominent applications in quantum optics and quantum information processing with superconducting electronic circuits and in single photon detectors and parametric amplifiers.



rate research

Read More

The introduction of crystalline defects or dopants can give rise to so-called dirty superconductors, characterized by reduced coherence length and quasiparticle mean free path. In particular, granular superconductors such as Granular Aluminum (GrAl), consisting of remarkably uniform grains connected by Josephson contacts have attracted interest since the sixties thanks to their rich phase diagram and practical advantages, like increased critical temperature, critical field, and kinetic inductance. Here we report the measurement and modeling of circuit quantum electrodynamics properties of GrAl microwave resonators in a wide frequency range, up to the spectral superconducting gap. Interestingly, we observe self-Kerr coefficients ranging from $10^{-2}$ Hz to $10^5$ Hz, within an order of magnitude from analytic calculations based on GrAl microstructure. This amenable nonlinearity, combined with the relatively high quality factors in the $10^5$ range, open new avenues for applications in quantum information processing and kinetic inductance detectors.
338 - J. E. Healey 2008
We describe measurements on microwave coplanar resonators designed for quantum bit experiments. Resonators have been patterned onto sapphire and silicon substrates, and quality factors in excess of a million have been observed. The resonant frequency shows a high sensitivity to magnetic field applied perpendicular to the plane of the film, with a quadratic dependence for the fundamental, second and third harmonics. Frequency shift of hundreds of linewidths can be obtained.
We report on the design, fabrication and characterization of superconducting coplanar waveguide resonators with nanoscopic constrictions. By reducing the size of the center line down to 50 nm, the radio frequency currents are concentrated and the magnetic field in its vicinity is increased. The device characteristics are only slightly modified by the constrictions, with changes in resonance frequency lower than 1% and internal quality factors of the same order of magnitude as the original ones. These devices could enable the achievement of higher couplings to small magnetic samples or even to single molecular spins and have applications in circuit quantum electrodynamics, quantum computing and electron paramagnetic resonance.
Thin films of TiN were sputter-deposited onto Si and sapphire wafers with and without SiN buffer layers. The films were fabricated into RF coplanar waveguide resonators, and internal quality factor measurements were taken at millikelvin temperatures in both the many photon and single photon limits, i.e. high and low power regimes, respectively. At high power, internal quality factors ($Q_i$s) higher than $10^7$ were measured for TiN with predominantly a (200)-TiN orientation. Films that showed significant (111)-TiN texture invariably had much lower $Q_i$s, on the order of $10^5$. Our studies show that the (200)-TiN is favored for growth at high temperature on either bare Si or SiN buffer layers. However, growth on bare sapphire or Si(100) at low temperature resulted in primarily a (111)-TiN orientation. Ellipsometry and Auger measurements indicate that the (200)-TiN growth on the bare Si substrates is correlated with the formation of a thin, $approx 2$ nm, layer of SiN during the pre-deposition procedure. In the single photon regime, $Q_i$ of these films exceeded $8times10^5$, while thicker SiN buffer layers led to reduced $Q_i$s at low power.
We study the loss rate for a set of lambda/2 coplanar waveguide resonators at millikelvin temperatures (20 mK - 900mK) and different applied powers (3E-19 W - 1E-12 W). The loss rate becomes power independent below a critical power. For a fixed power, the loss rate increases significantly with decreasing temperature. We show that this behavior can be caused by two-level systems in the surrounding dielectric materials. Interestingly, the influence of the two-level systems is of the same order of magnitude for the different material combinations. That leads to the assumption that the nature of these two-level systems is material independent.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا