Do you want to publish a course? Click here

Fluorescent oxide nanoparticles adapted to active tips for near-field optics

155   0   0.0 ( 0 )
 Added by Serge Huant
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new kind of fluorescent oxide nanoparticles with properties well suited to active-tip based near-field optics. These particles with an average diameter in the range 5-10 nm are produced by Low Energy Cluster Beam Deposition (LECBD) from a YAG:Ce3+ target. They are studied by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), classical photoluminescence, cathodoluminescence and near-field scanning optical microscopy (NSOM). Particles of extreme photo-stability as small as 10 nm in size are observed. These emitters are validated as building blocks of active NSOM tips by coating a standard optical tip with a 10 nm thick layer of YAG:Ce3+ particles directly in the LECBD reactor and by subsequently performing NSOM imaging of test surfaces.



rate research

Read More

We present results showing the potential of diamond nanoparticles with size less than 50 nm as photoluminescent nanoprobes for serving as stable point-like emitters attached at the tip apex of a near-field optical microscope to achieve enhanced spatial resolution.
Research on cerium oxide nanoparticles (nanoceria) has captivated the scientific community due to their unique physical and chemical properties, such as redox activity and oxygen buffering capacity, which made them available for many technical applications, including biomedical applications. The redox mimetic antioxidant properties of nanoceria have been effective in the treatment of many diseases caused by reactive oxygen species (ROS) and reactive nitrogen species. The mechanism of ROS scavenging activity of nanoceria is still elusive, and its redox activity is controversial due to mixed reports in the literature showing pro-oxidant and antioxidant activity. In lieu of its current research interest, it is critical to understand the behaviour of nanoceria in the biological environment and provide answers to some of the critical and open issues. This review critically analyses the status of research on the application of nanoceria to treat diseases caused by ROS. It reviews the proposed mechanism of action and shows the effect of surface coatings on its redox activity. It also discusses some of the crucial issues in deciphering the mechanism and redox activity of nanoceria and suggests areas of future research.
We present a method to realize active optical tips for use in near-field optics that can operate at room temperature. A metal-coated optical tip is covered with a thin polymer layer stained with CdSe nanocrystals or nanorods at low density. The time analysis of the emission rate and emission spectra of the active tips reveal that a very small number of particles - possibly down to only one - can be made active at the tip apex. This opens the way to near-field optics with a single inorganic nanoparticle as a light source.
We analyze the heat transfer between two nanoparticles separated by a distance lying in the near-field domain in which energy interchange is due to Coulomb interactions. The thermal conductance is computed by assuming that the particles have charge distributions characterized by fluctuating multipole moments in equilibrium with heat baths at two different temperatures. This quantity follows from the fluctuation-dissipation theorem (FDT) for the fluctuations of the multipolar moments. We compare the behavior of the conductance as a function of the distance between the particles with the result obtained by means of molecular dynamics simulations. The formalism proposed enables us to provide a comprehensive explanation of the marked growth of the conductance when decreasing the distance between the nanoparticles.
We report a study on the pressure response of the anisotropy energy of hollow and solid maghemite nanoparticles. The differences between the maghemite samples are understood in terms of size, magnetic anisotropy and shape of the particles. In particular, the differences between hollow and solid samples are due to the different shape of the nanoparticles and by comparing both pressure responses it is possible to conclude that the shell has a larger pressure response when compared to the core.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا