No Arabic abstract
The dielectric response in a magnetic field is routinely used to probe the existence of coupled magnetic and elastic order in the multiferroics. However, here we demonstrate that magnetism is not necessary to produce a magnetocapacitance when the material is inhomogeneous. By considering a two-dimensional, two-component composite medium, we find a characteristic dielectric resonance that depends on magnetic field. We propose this as a possible signature of inhomogeneities and we argue that this behavior has already been observed in nanoporous silicon and some manganites.
The current critical review aims to be more than a simple summary and reproduction of previously published work. Many comprehensive reviews and collections can be found in the literature. The main intention is to provide an account of the progress made in selected aspects of photoinduced phenomena in non-crystalline chalcogenides, presenting the current understanding of the mechanisms underlying such effects. An essential motive for the present review article has been to assess critically published experimental work in the field.
In a recent Letter, Berciu and Bhatt have presented a mean-field theory of ferromagnetism in III-V semiconductors doped with manganese, starting from an impurity band model. We show that this approach gives an unphysically broad impurity band and is thus not appropriate for (Ga,Mn)As containing 1-5% Mn. We also point out a microscopically unmotivated sign change in the overlap integrals in the Letter. Without this sign change, stable ferromagnetism is not obtained.
The silver chalcogenides provide a striking example of the benefits of imperfection. Nanothreads of excess silver cause distortions in the current flow that yield a linear and non-saturating transverse magnetoresistance (MR). Associated with the large and positive MR is a negative longitudinal MR. The longitudinal MR only occurs in the three-dimensional limit and thereby permits the determination of a characteristic length scale set by the spatial inhomogeneity. We find that this fundamental inhomogeneity length can be as large as ten microns. Systematic measurements of the diagonal and off-diagonal components of the resistivity tensor in various sample geometries show clear evidence of the distorted current paths posited in theoretical simulations. We use a random resistor network model to fit the linear MR, and expand it from two to three dimensions to depict current distortions in the third (thickness) dimension. When compared directly to experiments on Ag$_{2pmdelta}$Se and Ag$_{2pmdelta}$Te, in magnetic fields up to 55 T, the model identifies conductivity fluctuations due to macroscopic inhomogeneities as the underlying physical mechanism. It also accounts reasonably quantitatively for the various components of the resistivity tensor observed in the experiments.
We suggest an approach to account for spatial (composition) and thermal fluctuations in disordered magnetic models (e.g. Heisenberg, Ising) with given spatial dependence of magnetic spin-spin interaction. Our approach is based on introduction of fluctuating molecular field (rather than mean field) acting between the spins. The distribution function of the above field is derived self-consistently. In general case this function is not Gaussian, latter asymptotics occurs only at sufficiently large spins (magnetic ions) concentrations $n_i$. Our approach permits to derive the equation for a critical temperature $T_c$ of ferromagnetic phase transition with respect to the above fluctuations. We apply our theory to the analysis of influence of composition fluctuations on $T_c$ in diluted magnetic semiconductors (DMS) with RKKY indirect spin-spin interaction.
We consider the transport of conserved charges in spatially inhomogeneous quantum systems with a discrete lattice symmetry. We analyse the retarded two point functions involving the charge and the associated currents at long wavelengths, compared to the scale of the lattice, and, when the DC conductivity is finite, extract the hydrodynamic modes associated with charge diffusion. We show that the dispersion relations of these modes are related to the eigenvalues of a specific matrix constructed from the DC conductivity and certain thermodynamic susceptibilities, thus obtaining generalised Einstein relations. We illustrate these general results in the specific context of relativistic hydrodynamics where translation invariance is broken using spatially inhomogeneous and periodic deformations of the stress tensor and the conserved $U(1)$ currents. Equivalently, this corresponds to considering hydrodynamics on a curved manifold, with a spatially periodic metric and chemical potential.