Do you want to publish a course? Click here

A New Car-Following Model Inspired by Galton Board

245   0   0.0 ( 0 )
 Added by Li Li
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Different from previous models based on scatter theory and random matrix theory, a new interpretation of the observed log-normal type time-headway distribution of vehicles is presented in this paper. Inspired by the well known Galton Board, this model views drivers velocity adjusting process similar to the dynamics of a particle falling down a board and being deviated at decision points. A new car-following model based on this idea is proposed to reproduce the observed traffic flow phenomena. The agreement between the empirical observations and the simulation results suggests the soundness of this new approach.



rate research

Read More

469 - Fa Wang , Li Li , Jianming Hu 2008
To provide a more accurate description of the driving behaviors in vehicle queues, a namely Markov-Gap cellular automata model is proposed in this paper. It views the variation of the gap between two consequent vehicles as a Markov process whose stationary distribution corresponds to the observed distribution of practical gaps. The multiformity of this Markov process provides the model enough flexibility to describe various driving behaviors. Two examples are given to show how to specialize it for different scenarios: usually mentioned flows on freeways and start-up flows at signalized intersections. The agreement between the empirical observations and the simulation results suggests the soundness of this new approach.
We generalize the concept of optical Galton board (OGB), first proposed by Bouwmeester et al. {[}Phys. Rev. A textbf{61}, 013410 (2000)], by introducing the possibility of nonlinear self--phase modulation on the wavefunction during the walker evolution. If the original Galton board illustrates classical diffusion, the OGB, which can be understood as a grid of Landau--Zener crossings, illustrates the influence of interference on diffusion, and is closely connected with the quantum walk. Our nonlinear generalization of the OGB shows new phenomena, the most striking of which is the formation of non-dispersive pulses in the field distribution (soliton--like structures). These exhibit a variety of dynamical behaviors, including ballistic motion, dynamical localization, non--elastic collisions and chaotic behavior, in the sense that the dynamics is very sensitive to the nonlinearity strength.
This paper develops new insights into quantitative methods for the validation of computational model prediction. Four types of methods are investigated, namely classical and Bayesian hypothesis testing, a reliability-based method, and an area metric-based method. Traditional Bayesian hypothesis testing is extended based on interval hypotheses on distribution parameters and equality hypotheses on probability distributions, in order to validate models with deterministic/stochastic output for given inputs. Two types of validation experiments are considered - fully characterized (all the model/experimental inputs are measured and reported as point values) and partially characterized (some of the model/experimental inputs are not measured or are reported as intervals). Bayesian hypothesis testing can minimize the risk in model selection by properly choosing the model acceptance threshold, and its results can be used in model averaging to avoid Type I/II errors. It is shown that Bayesian interval hypothesis testing, the reliability-based method, and the area metric-based method can account for the existence of directional bias, where the mean predictions of a numerical model may be consistently below or above the corresponding experimental observations. It is also found that under some specific conditions, the Bayes factor metric in Bayesian equality hypothesis testing and the reliability-based metric can both be mathematically related to the p-value metric in classical hypothesis testing. Numerical studies are conducted to apply the above validation methods to gas damping prediction for radio frequency (RF) microelectromechanical system (MEMS) switches. The model of interest is a general polynomial chaos (gPC) surrogate model constructed based on expensive runs of a physics-based simulation model, and validation data are collected from fully characterized experiments.
Langevin models are frequently used to model various stochastic processes in different fields of natural and social sciences. They are adapted to measured data by estimation techniques such as maximum likelihood estimation, Markov chain Monte Carlo methods, or the non-parametric direct estimation method introduced by Friedrich et al. The latter has the distinction of being very effective in the context of large data sets. Due to their $delta$-correlated noise, standard Langevin models are limited to Markovian dynamics. A non-Markovian Langevin model can be formulated by introducing a hidden component that realizes correlated noise. For the estimation of such a partially observed diffusion a different version of the direct estimation method was introduced by Lehle et al. However, this procedure includes the limitation that the correlation length of the noise component is small compared to that of the measured component. In this work we propose another version of the direct estimation method that does not include this restriction. Via this method it is possible to deal with large data sets of a wider range of examples in an effective way. We discuss the abilities of the proposed procedure using several synthetic examples.
This study proposes a framework for human-like autonomous car-following planning based on deep reinforcement learning (deep RL). Historical driving data are fed into a simulation environment where an RL agent learns from trial and error interactions based on a reward function that signals how much the agent deviates from the empirical data. Through these interactions, an optimal policy, or car-following model that maps in a human-like way from speed, relative speed between a lead and following vehicle, and inter-vehicle spacing to acceleration of a following vehicle is finally obtained. The model can be continuously updated when more data are fed in. Two thousand car-following periods extracted from the 2015 Shanghai Naturalistic Driving Study were used to train the model and compare its performance with that of traditional and recent data-driven car-following models. As shown by this study results, a deep deterministic policy gradient car-following model that uses disparity between simulated and observed speed as the reward function and considers a reaction delay of 1s, denoted as DDPGvRT, can reproduce human-like car-following behavior with higher accuracy than traditional and recent data-driven car-following models. Specifically, the DDPGvRT model has a spacing validation error of 18% and speed validation error of 5%, which are less than those of other models, including the intelligent driver model, models based on locally weighted regression, and conventional neural network-based models. Moreover, the DDPGvRT demonstrates good capability of generalization to various driving situations and can adapt to different drivers by continuously learning. This study demonstrates that reinforcement learning methodology can offer insight into driver behavior and can contribute to the development of human-like autonomous driving algorithms and traffic-flow models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا