Do you want to publish a course? Click here

Monolithic Active Pixel Sensors (MAPS) in a quadruple well technology for nearly 100% fill factor and full CMOS pixels

260   0   0.0 ( 0 )
 Added by Paul Dauncey
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we present a novel, quadruple well process developed in a modern 0.18mu CMOS technology called INMAPS. On top of the standard process, we have added a deep P implant that can be used to form a deep P-well and provide screening of N-wells from the P-doped epitaxial layer. This prevents the collection of radiation-induced charge by unrelated N-wells, typically ones where PMOS transistors are integrated. The design of a sensor specifically tailored to a particle physics experiment is presented, where each 50mu pixel has over 150 PMOS and NMOS transistors. The sensor has been fabricated in the INMAPS process and first experimental evidence of the effectiveness of this process on charge collection is presented, showing a significant improvement in efficiency.



rate research

Read More

CMOS Monolithic Active Pixel Sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the the dead time free, so-called self bias pixel. Moreover, we discuss radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mrad
301 - F.J. Iguaz , F. Balli , M. Barbero 2018
This work presents a depleted monolithic active pixel sensor (DMAPS) prototype manufactured in the LFoundry 150,nm CMOS process. DMAPS exploit high voltage and/or high resistivity inclusion of modern CMOS technologies to achieve substantial depletion in the sensing volume. The described device, named LF-Monopix, was designed as a proof of concept of a fully monolithic sensor capable of operating in the environment of outer layers of the ATLAS Inner Tracker upgrade in 2025 for the High Luminosity Large Hadron Collider (HL-LHC). This type of devices has a lower production cost and lower material budget compared to presently used hybrid designs. In this work, the chip architecture will be described followed by the characterization of the different pre-amplifier and discriminator flavors with an external injection signal and an iron source (5.9,keV x-rays).
CMOS Monolithic Active Pixel Sensors (MAPS) were chosen as sensor technology for the vertex detectors of STAR, CBM and the upgraded ALICE-ITS. They also constitute a valuable option for tracking devices at future e+e- colliders. Those applications require a substantial tolerance to both, ionizing and non-ionizing radiation. To allow for a focused optimization of the radiation tolerance, prototypes are tested by irradiating the devices either with purely ionizing radiation (e.g. soft X-rays) or the most pure sources of non-ionizing radiation available (e.g. reactor neutrons). In the second case, it is typically assumed that the impact of the parasitic $gamma$-rays found in the neutron beams is negligible. We checked this assumption by irradiating MAPS with $gamma$-rays and comparing the radiation damage generated with the one in neutron irradiated sensors. We conclude that the parasitic radiation doses may cause non-negligible radiation damage. Based on the results we propose a procedure to recognize and to suppress the effect of the related parasitic ionizing radiation damage.
- Paper withdrawn by the author - CMOS Monolithic Active Pixel Sensors for charged particle tracking are considered as technology for numerous experiments in heavy ion and particle physics. To match the requirements for those applications in terms of tolerance to non-ionizing radiation, it is being tried to deplete the sensitive volume of the, traditionally non-depleted, silicon sensors. We study the feasibility of this approach for the common case that the collection diodes of the pixel are small as compared to the pixel pitch. An analytic equation predicting the thickness of the depletion depth and the capacity of this point-like junction is introduced. We find that the predictions of this equations differs qualitatively from the usual results for flat PN junctions and that $dC/dU$-measurements are not suited to measure the depletion depth of diodes with point-like geometry. The predictions of the equation is compared with measurements on the depletion depth of CMOS sensors, which were carried out with a novel measurement protocol. It is found that the equation and the measurement results match with each other. By comparing our findings with TCAD simulations, we find that precise simulation models matches the empirical findings while simplified models overestimate the depletion depth dramatically. A potential explanation for this finding is introduced and the consequences for the design of CMOS sensors are discussed.
Monolithic Active Pixel Sensors (MAPS) have been developed since the late 1990s employing silicon substrate with a thin epitaxial layer in which deposited charge is collected by disordered diffusion rather than by drift in an electric field. As a consequence the signal is small and slow, and the radiation tolerance is below the requirements for LHC experiments by factors of 100 to 1000. We developed fully depleted (D)MAPS pixel sensors employing a 150 nm CMOS technology and using a high resistivity substrate as well as a high biasing voltage. The development has been carried out in three subsequent iterations, from prototypes to a large pixel matrix comprising a complete readout architecture suitable for LHC operation. Full CMOS electronics is embedded in large deep n-wells which at the same time serve as collection nodes (large electrode design). The devices have been intensively characterized before and after irradiation employing lab tests as well as particle beams. The devices can cope with particle rates seen by the innermost pixel detectors of the LHC pp-experiments or as seen by the outer pixel layers of the planned HL-LHC upgrade. They are radiation hard to particle fluences of at least $10^{15}~mathrm{n_{eq}/cm^2}$ and total ionization doses of at least 50 Mrad.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا