Do you want to publish a course? Click here

Low Temperature Transport in Undoped Mesoscopic Structures

91   0   0.0 ( 0 )
 Added by Kantimay Das Gupta
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using high quality undoped GaAs/AlGaAs heterostructures with optically patterned insulation between two layers of gates, it is possible to investigate very low density mesoscopic regions where the number of impurities is well quantified. Signature appearances of the scattering length scale arise in confined two dimensional regions, where the zero-bias anomaly (ZBA) is also observed. These results explicitly outline the molecular beam epitaxy growth parameters necessary to obtain ultra low density large two dimensional regions as well as clean reproducible mesoscopic devices.

rate research

Read More

We investigate transport and Coulomb drag properties of semiconductor-based electron-hole bilayer systems. Our calculations are motivated by recent experiments in undoped electron-hole bilayer structures based on GaAs-AlGaAs gated double quantum well systems. Our results indicate that the background charged impurity scattering is the most dominant resistive scattering mechanism in the high-mobility bilyers. We also find that the drag transresistivity is significantly enhanced when the electron-hole layer separation is small due to the exchange induced renormalization of the single layer compressibility.
Contents: (1) Model of a lateral quantum dot system (2) Thermally-activated conduction: onset of the Coulomb blockade oscillations and Coulomb blockade peaks at low temperature (3) Activationless transport through a blockaded quantum dot: inelastic and elastic co-tunneling (4) Kondo regime in transport through a quantum dot: effective low-energy Hamiltonian; linear response; weak coupling regime; strong coupling regime; beyond linear response; splitting of the Kondo peak in a magnetic field; Kondo effect in quantum dots with large spin.
We report on the study of the electrical current flowing in weakly coupled superlattice (SL) structures under an applied electric field at very low temperature, i.e. in the tunneling regime. This low temperature transport is characterized by an extremely low tunneling probability between adjacent wells. Experimentally, I(V) curves at low temperature display a striking feature, i.e a plateau or null differential conductance. A theoretical model based on the evaluation of scattering rates is developed in order to understand this behaviour, exploring the different scattering mechanisms in AlGaAs alloys. The dominant interaction in usual experimental conditions such as ours is found to be the electron-ionized donors scattering. The existence of the plateau in the I(V) characteristics is physically explained by a competition between the electric field localization of the Wannier-Stark electron states in the weakly coupled quantum wells and the electric field assisted tunneling between adjacent wells. The influence of the doping concentration and profile as well as the presence of impurities inside the barrier are discussed.
We numerically investigate the electronic transport properties between two mesoscopic graphene disks with a twist by employing the density functional theory coupled with non-equilibrium Greens function technique. By attaching two graphene leads to upper and lower graphene layers separately, we explore systematically the dependence of electronic transport on the twist angle, Fermi energy, system size, layer stacking order and twist axis. When choose different twist axes for either AA- or AB-stacked bilayer graphene, we find that the dependence of conductance on twist angle displays qualitatively distinction, i.e., the systems with top axis exhibit finite conductance oscillating as a function of the twist angle, while the ones with hollow axis exhibit nearly vanishing conductance for different twist angles or Fermi energies near the charge neutrality point. These findings suggest that the choice of twist axis can effectively tune the interlayer conductance, making it a crucial factor in designing of nanodevices with the twisted van der Waals multilayers.
Topological states of matter have attracted a lot of attention due to their many intriguing transport properties. In particular, two-dimensional topological insulators (2D TI) possess gapless counter propagating conducting edge channels, with opposite spin, that are topologically protected from backscattering. Two basic features are supposed to confirm the existence of the ballistic edge channels in the submicrometer limit: the 4-terminal conductance is expected to be quantized at the universal value $2e^{2}/h$, and a nonlocal signal should appear due to a net current along the sample edge, carried by the helical states. On the other hand for longer channels the conductance has been found to deviate from the quantized value. This article reviewer the experimental and theoretical work related to the transport in two-dimensional topological insulators (2D-TI), based on HgTe quantum wells in zero magnetic field. We provide an overview of the basic mechanisms predicting a deviation from the quantized transport due to backscattering (accompanied by spin-flips) between the helical channels. We discuss the details of the model, which takes into account the edge and bulk contribution to the total current and reproduces the experimental results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا