Do you want to publish a course? Click here

Transport and drag in undoped electron-hole bilayers

126   0   0.0 ( 0 )
 Added by E. H. Hwang
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate transport and Coulomb drag properties of semiconductor-based electron-hole bilayer systems. Our calculations are motivated by recent experiments in undoped electron-hole bilayer structures based on GaAs-AlGaAs gated double quantum well systems. Our results indicate that the background charged impurity scattering is the most dominant resistive scattering mechanism in the high-mobility bilyers. We also find that the drag transresistivity is significantly enhanced when the electron-hole layer separation is small due to the exchange induced renormalization of the single layer compressibility.



rate research

Read More

We report Coulomb drag measurements on GaAs-AlGaAs electron-hole bilayers. The two layers are separated by a 10 or 25nm barrier. Below T$approx$1K we find two features that a Fermi-liquid picture cannot explain. First, the drag on the hole layer shows an upturn, which may be followed by a downturn. Second, the effect is either absent or much weaker in the electron layer, even though the measurements are within the linear response regime. Correlated phases have been anticipated in these, but surprisingly, the experimental results appear to contradict Onsagers reciprocity theorem.
We describe a technique to fabricate closely spaced electron-hole bilayers in GaAs-AlGaAs heterostructures. Our technique incorporates a novel method for making shallow contacts to a low density ($<10^{11}cm^{-2}$) 2-dimensional electron gas (2DEG) that do not require annealing. Four terminal measurements on both layers (25nm apart) are possible. Measurements show a hole mobility $mu_{h}>10^{5}{rm cm}^{2}{rm V}^{-1}{rm s}^{-1}$ and an electron mobility $mu_{e}>10^{6}{rm cm}^{2}{rm V}^{-1}{rm s}^{-1}$ at 1.5K. Preliminary drag measurements made down to T=300mK indicate an enhancement of coulomb interaction over the values obtained from a static Random Phase Approximation (RPA) calculation.
69 - P. Debray 2002
The presence of pronounced electronic correlations in one-dimensional systems strongly enhances Coulomb coupling and is expected to result in distinctive features in the Coulomb drag between them that are absent in the drag between two-dimensional systems. We review recent Fermi and Luttinger liquid theories of Coulomb drag between ballistic one-dimensional electron systems, and give a brief summary of the experimental work reported so far on one-dimensional drag. Both the Fermi liquid (FL) and the Luttinger liquid (LL) theory predict a maximum of the drag resistance R_D when the one-dimensional subbands of the two quantum wires are aligned and the Fermi wave vector k_F is small, and also an exponential decay of R_D with increasing inter-wire separation, both features confirmed by experimental observations. A crucial difference between the two theoretical models emerges in the temperature dependence of the drag effect. Whereas the FL theory predicts a linear temperature dependence, the LL theory promises a rich and varied dependence on temperature depending on the relative magnitudes of the energy and length scales of the systems. At higher temperatures, the drag should show a power-law dependence on temperature, $R_D ~ T^x$, experimentally confirmed in a narrow temperature range, where x is determined by the Luttinger liquid parameters. The spin degree of freedom plays an important role in the LL theory in predicting the features of the drag effect and is crucial for the interpretation of experimental results.
We report drag measurements on dilute double layer two-dimensional hole systems in the regime of r_s=19~39. We observed a strong enhancement of the drag over the simple Boltzmann calculations of Coulomb interaction, and deviations from the T^2 dependence which cannot be explained by phonon-mediated, plasmon-enhanced, or disorder-related processes. We suggest that this deviation results from interaction effects in the dilute regime.
We study thermoelectric transport through a coherent molecular conductor connected to two electron and two phonon baths using the nonequilibrium Greens function method. We focus on the mutual drag between electron and phonon transport as a result of `momentum transfer, which happens only when there are at least two phonon degrees of freedom. After deriving expressions for the linear drag coefficients, obeying the Onsager relation, we further investigate their effect on nonequilibrium transport. We show that the drag effect is closely related to two other phenomena: (1) adiabatic charge pumping through a coherent conductor; (2) the current-induced nonconservative and effective magnetic forces on phonons.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا