Do you want to publish a course? Click here

Dirac Cones and Minigaps for Graphene on Ir(111)

462   0   0.0 ( 0 )
 Added by Marko Kralj
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Epitaxial graphene on Ir(111) prepared in excellent structural quality is investigated by angle-resolved photoelectron spectroscopy. It clearly displays a Dirac cone with the Dirac point shifted only slightly above the Fermi level. The moire resulting from the overlaid graphene and Ir(111) surface lattices imposes a superperiodic potential giving rise to Dirac cone replicas and the opening of minigaps in the band structure.



rate research

Read More

Using density-functional theory, we calculate the electronic bandstructure of single-layer graphene on top of hexagonal In_2Te_2 monolayers. The geometric configuration with In and Te atoms at centers of carbon hexagons leads to a Kekule texture with an ensuing bandgap of 20 meV. The alternative structure, nearly degenerate in energy, with the In and Te atoms on top of carbon sites is characterized instead by gapless spectrum with the original Dirac cones of graphene reshaped, depending on the graphene-indium chalcogenide distance, either in the form of an undoubled pseudo-spin one Dirac cone or in a quadratic band crossing point at the Fermi level. These electronic phases harbor charge fractionalization and topological Mott insulating states of matter.
Angle resolved photoelectron spectroscopy (ARPES) is extensively used to characterize the dependence of the electronic structure of graphene on Ir(111) on the preparation process. ARPES findings reveal that temperature programmed growth alone or in combination with chemical vapor deposition leads to graphene displaying sharp electronic bands. The photoemission intensity of the Dirac cone is monitored as a function of the increasing graphene area. Electronic features of the moire superstructure present in the system, namely minigaps and replica bands are examined and used as robust features to evaluate graphene uniformity. The overall dispersion of the pi-band is analyzed. Finally, by the variation of photon energy, relative changes of the pi- and sigma-band intensities are demonstrated.
Using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, and scanning tunneling microscopy we show that upon keV Xe + irradiation of graphene on Ir(111), Xe atoms are trapped under the graphene. Upon annealing, aggregation of Xe leads to graphene bulges and blisters. The efficient trapping is an unexpected and remarkable phenomenon, given the absence of chemical binding of Xe to Ir and to graphene, the weak interaction of a perfect graphene layer with Ir(111), as well as the substantial damage to graphene due to irradiation. By combining molecular dynamics simulations and density functional theory calculations with our experiments, we uncover the mechanism of trapping. We describe ways to avoid blister formation during graphene growth, and also demonstrate how ion implantation can be used to intentionally create blisters without introducing damage to the graphene layer. Our approach may provide a pathway to synthesize new materials at a substrate - 2D material interface or to enable confined reactions at high pressures and temperatures.
Single-crystalline transition metal films are ideal playing fields for the epitaxial growth of graphene and graphene-base materials. Graphene-silicon layered structures were successfully constructed on Ir(111) thin film on Si substrate with an yttria-stabilized zirconia buffer layer via intercalation approach. Such hetero-layered structures are compatible with current Si-based microelectronic technique, showing high promise for applications in future micro- and nano-electronic devices.
Artificial lattices provide a tunable platform to realize exotic quantum devices. A well-known example is artificial graphene (AG), in which electrons are confined in honeycomb lattices and behave as massless Dirac fermions. Recently, AG systems have been constructed by manipulating molecules using scanning tunnelling microscope tips, but the nanoscale size typical for these constructed systems are impossible for practical device applications and insufficient for direct investigation of the electronic structures using angle-resolved photoemission spectroscopy (ARPES). Here, we demonstrate the synthesis of macroscopic AG by self-assembly of C$_{60}$ molecules on metal surfaces. Our theoretical calculations and ARPES measurements directly confirm the existence of Dirac cones at the $K$ ($K^prime$) points of the Brillouin zone (BZ), in analogy to natural graphene. These results will stimulate ongoing efforts to explore the exotic properties in artificial lattices and provide an important step forward in the realization of novel molecular quantum devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا