No Arabic abstract
Because of properties of QED, the bremsstrahlung corrections to decays of particles or resonances can be calculated, with a good precision, separately from other effects. Thanks to the widespread use of event records such calculations can be embodied into a separate module of Monte Carlo simulation chains, as used in High Energy Experiments of today. The PHOTOS Monte Carlo program is used for this purpose since nearly 20 years now. In the following talk let us review the main ideas and constraints which shaped the program version of today and enabled it widespread use. Finally, we will underline importance of aspects related to reliability of program results: event record contents and implementation of channel specific matrix elements.
With the approaching start-up of the experiments at LHC, the urgency to quantify systematic uncertainties of the generators, used in the interpretation of the data, is becoming pressing. The PHOTOS Monte Carlo program is often used for the simulationof experimental, selection-sensitive, QED radiative corrections in decays of Z bosons and other heavy resonances and particles. Thanks to its complete phase-space coverage it is possible, with no approximations for any decay channel, to implement the matrix-element. The present paper will be devoted to those parts of the next-to-leading order corrections for Z decays which are normally missing in PHOTOS. The analytical form of the exact and truncated (standard) kernel used in PHOTOS will be explicitly given. The correction, being the ratio of the exact to the approximate kernel, can be activated as an optional contribution to the internal weight of PHOTOS. To calculate the weight, the information on the effective Born-level Z/gamma* couplings and even directions of the incoming beams, is needed. A universal implementation would have made the PHOTOS solution less modular and less convenient for the users. That is why, for the time being, we will keep the correcting weight as an extra option, available for special tests only. We will quantify the numerical effect of the approximation with the help of a multitude of distributions. The numerical size of the effect is in general below 0.1%; however, in some corners of the phase-space (well defined and contributing less than 0.5% to the total rate), it may reach up to about 20% of their relative size.
Because of properties of QED, the bremsstrahlung corrections to decays of particles or resonances can be calculated, with a good precision, separately from other effects. Thanks to the widespread use of event records such calculations can be embodied into a separate module of Monte Carlo simulation chains, as used in High Energy Experiments of today. The PHOTOS Monte Carlo program is used for this purpose since nearly 20 years now. In the following talk let us review the main ideas and constraints which shaped the program version of today and enabled it widespread use. We will concentrate specially on conflicting requirements originating from the properties of QED matrix elements on one side and degrading (evolving) with time standards of event record(s). These issues, quite common in other modular software applications, become more and more difficult to handle as precision requirements become higher.
We report an accurate study of interactions between Benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory (DFT) using different van der Waals (vdW) functionals. In our QMC calculations, we use accurate correlated trial wave functions including three-body Jastrow factors, and backflow transformations. We consider two benzene molecules in the parallel displaced (PD) geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the CCSD(T)/CBS limit is -2.65(2) kcal/mol [E. Miliordos et al, J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.
In this talk I gave a brief summary of leading order, next-to-leading order and shower calculations. I discussed the main ideas and approximations of the shower algorithms and the related matching schemes. I tried to focus on QCD issues and open questions instead of making a inventory of the existing programs.
While the Quasi-Monte Carlo method of numerical integration achieves smaller integration error than standard Monte Carlo, its use in particle physics phenomenology has been hindered by the abscence of a reliable way to estimate that error. The standard Monte Carlo error estimator relies on the assumption that the points are generated independently of each other and, therefore, fails to account for the error improvement advertised by the Quasi-Monte Carlo method. We advocate the construction of an estimator of stochastic nature, based on the ensemble of pointsets with a particular discrepancy value. We investigate the consequences of this choice and give some first empirical results on the suggested estimators.