Do you want to publish a course? Click here

q-Euler Numbers and Polynomials Associated with Basic Zeta Functions

269   0   0.0 ( 0 )
 Added by Taekyun Kim
 Publication date 2008
  fields
and research's language is English
 Authors Taekyun Kim




Ask ChatGPT about the research

In this paper we give the q-extension of Euler numbers which can be viewed as interpolating of the q-analogue of Euler zeta function ay negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Finally we woll treat some identities of the q-extension of the euler numbers by using fermionic p-adic q-integration on Z_p.



rate research

Read More

136 - Taekyun Kim 2008
In this paper we investigate the properties of the Euler functions. By using the Fourier transform for the Euler function, we derive the interesting formula related to the infinite series. Finally we give some interesting identities between the Euler numbers and the second kind stirling numbers.
170 - Victor J. W. Guo 2020
Let $E_n$ be the $n$-th Euler number and $(a)_n=a(a+1)cdots (a+n-1)$ the rising factorial. Let $p>3$ be a prime. In 2012, Sun proved the that $$ sum^{(p-1)/2}_{k=0}(-1)^k(4k+1)frac{(frac{1}{2})_k^3}{k!^3} equiv p(-1)^{(p-1)/2}+p^3E_{p-3} pmod{p^4}, $$ which is a refinement of a famous supercongruence of Van Hamme. In 2016, Chen, Xie, and He established the following result: $$ sum_{k=0}^{p-1}(-1)^k (3k+1)frac{(frac{1}{2})_k^3}{k!^3} 2^{3k} equiv p(-1)^{(p-1)/2}+p^3E_{p-3} pmod{p^4}, $$ which was originally conjectured by Sun. In this paper we give $q$-analogues of the above two supercongruences by employing the $q$-WZ method. As a conclusion, we provide a $q$-analogue of the following supercongruence of Sun: $$ sum_{k=0}^{(p-1)/2}frac{(frac{1}{2})_k^2}{k!^2} equiv (-1)^{(p-1)/2}+p^2 E_{p-3} pmod{p^3}. $$
95 - Bjorn Poonen 2017
In 2005, Kayal suggested that Schoofs algorithm for counting points on elliptic curves over finite fields might yield an approach to factor polynomials over finite fields in deterministic polynomial time. We present an exposition of his idea and then explain details of a generalization involving Pilas algorithm for abelian varieties.
108 - Jiyou Li 2021
A conjecture of Le says that the Deligne polytope $Delta_d$ is generically ordinary if $pequiv 1 (!!bmod D(Delta_d))$, where $D(Delta_d)$ is a combinatorial constant determined by $Delta_d$. In this paper a counterexample is given to show that the conjecture is not true in general.
133 - Frederic Chapoton 2020
We explore some connections between moments of rescaled little q-Jacobi polynomials, q-analogues of values at negative integers for some Dirichlet series, and the q-Eulerian polynomials of wreath products of symmetric groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا