We investigate the formation of singularities in the incompressible Navier-Stokes equations in $dgeq 2$ dimensions with a fractional Laplacian $| abla |^alpha$. We derive analytically a sufficient but not necessary condition for solutions to remain always smooth and show that finite time singularities cannot form for $alphageq alpha_c= 1+d/2$. Moreover, initial singularities become unstable for $alpha>alpha_c$.
We address the question whether a singularity in a three-dimensional incompressible inviscid fluid flow can occur in finite time. Analytical considerations and numerical simulations suggest high-symmetry flows being a promising candidate for a finite-time blowup. Utilizing Lagrangian and geometric non-blowup criteria, we present numerical evidence against the formation of a finite-time singularity for the high-symmetry vortex dodecapole initial condition. We use data obtained from high resolution adaptively refined numerical simulations and inject Lagrangian tracer particles to monitor geometric properties of vortex line segments. We then verify the assumptions made by analytical non-blowup criteria introduced by Deng et. al [Commun. PDE 31 (2006)] connecting vortex line geometry (curvature, spreading) to velocity increase to rule out singular behavior.
We propose an effective conformal field theory (CFT) description of steady state incompressible fluid turbulence at the inertial range of scales in any number of spatial dimensions. We derive a KPZ-type equation for the anomalous scaling of the longitudinal velocity structure functions and relate the intermittency parameter to the boundary Euler (A-type) conformal anomaly coefficient. The proposed theory consists of a mean field CFT that exhibits Kolmogorov linear scaling (K41 theory) coupled to a dilaton. The dilaton is a Nambu-Goldstone gapless mode that arises from a spontaneous breaking due to the energy flux of the separate scale and time symmetries of the inviscid Navier-Stokes equations to a K41 scaling with a dynamical exponent $z=frac{2}{3}$. The dilaton acts as a random measure that dresses the K41 theory and introduces intermittency. We discuss the two, three and large number of space dimensions cases and how entanglement entropy can be used to characterize the intermittency strength.
We investigate the spatio-temporal structure of the most likely configurations realising extremely high vorticity or strain in the stochastically forced 3D incompressible Navier-Stokes equations. Most likely configurations are computed by numerically finding the highest probability velocity field realising an extreme constraint as solution of a large optimisation problem. High-vorticity configurations are identified as pinched vortex filaments with swirl, while high-strain configurations correspond to counter-rotating vortex rings. We additionally observe that the most likely configurations for vorticity and strain spontaneously break their rotational symmetry for extremely high observable values. Instanton calculus and large deviation theory allow us to show that these maximum likelihood realisations determine the tail probabilities of the observed quantities. In particular, we are able to demonstrate that artificially enforcing rotational symmetry for large strain configurations leads to a severe underestimate of their probability, as it is dominated in likelihood by an exponentially more likely symmetry broken vortex-sheet configuration.
We introduce two new singularity detection criteria based on the work of Duchon-Robert (DR) [J. Duchon and R. Robert, Nonlinearity, 13, 249 (2000)], and Eyink [G.L. Eyink, Phys. Rev. E, 74 (2006)] which allow for the local detection of singularities with scaling exponent $hleqslant1/2$ in experimental flows, using PIV measurements. We show that in order to detect such singularities, one does not need to have access to the whole velocity field inside a volume but can instead look for them from stereoscopic particle image velocimetry (SPIV) data on a plane. We discuss the link with the Beale-Kato-Majda (BKM) [J.T. Beale, T. Kato, A. Majda, Commun. Math. Phys., 94, 61 (1984)] criterion, based on the blowup of vorticity, which applies to singularities of Navier-Stokes equations. We illustrate our discussion using tomographic PIV data obtained inside a high Reynolds number flow generated inside the boundary layer of a wind tunnel. In such a case, BKM and DR criteria are well correlated with each other.
Lagrangian transport structures for three-dimensional and time-dependent fluid flows are of great interest in numerous applications, particularly for geophysical or oceanic flows. In such flows, chaotic transport and mixing can play important environmental and ecological roles, for examples in pollution spills or plankton migration. In such flows, where simulations or observations are typically available only over a short time, understanding the difference between short-time and long-time transport structures is critical. In this paper, we use a set of classical (i.e. Poincare section, Lyapunov exponent) and alternative (i.e. finite time Lyapunov exponent, Lagrangian coherent structures) tools from dynamical systems theory that analyze chaotic transport both qualitatively and quantitatively. With this set of tools we are able to reveal, identify and highlight differences between short- and long-time transport structures inside a flow composed of a primary horizontal contra-rotating vortex chain, small lateral oscillations and a weak Ekman pumping. The difference is mainly the existence of regular or extremely slowly developing chaotic regions that are only present at short time.
G. M. Viswanathan
,T. M. Viswanathan
.
(2008)
.
"Spontaneous symmetry breaking and finite time singularities in $d$-dimensional incompressible flow with fractional dissipation"
.
Gandhimohan M. Viswanathan
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا