Do you want to publish a course? Click here

Angular dependence of resistivity in the superconducting state of NdFeAsO$_{0.82}$F$_{0.18}$ single crystals

165   0   0.0 ( 0 )
 Added by Ying Jia
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of angle dependent resistivity of NdFeAsO$_{0.82}$F$_{0.18}$ single crystals in the superconducting state. By doing the scaling of resistivity within the frame of the anisotropic Ginzburg-Landau theory, it is found that the angle dependent resistivity measured under different magnetic fields at a certain temperature can be collapsed onto one curve. As a scaling parameter, the anisotropy $Gamma$ can be determined for different temperatures. It is found that $Gamma(T)$ increases slowly with decreasing temperature, varying from $Gamma simeq$ 5.48 at T=50 K to $Gamma simeq$ 6.24 at T=44 K. This temperature dependence can be understood within the picture of multi-band superconductivity.



rate research

Read More

We report plane-polarized Raman scattering spectra of iron oxypnictide superconductor NdFeAsO$_{1-x}$F$_x$ single crystals with varying fluorine $x$ content. The spectra exhibit sharp and symmetrical phonon lines with a weak dependence on fluorine doping $x$. The temperature dependence does not show any phonon anomaly at the superconducting transition. The Fe related phonon intensity shows a strong resonant enhancement below 2 eV. We associate the resonant enhancement to the presence of an interband transition around 2 eV observed in optical conductivity. Our results point to a rather weak coupling between Raman-active phonons and electronic excitations in iron oxypnictides superconductors.
272 - Peng Cheng , Huan Yang , Ying Jia 2008
Hall effect and magnetoresistance have been measured on single crystals of $NdFeAsO_{1-x}F_{x}$ with x = 0 ($T_c$ = 0 $ $K) and x = 0.18 ($T_c$ = 50 $ $K). For the undoped samples, strong Hall effect and magnetoresistance with strong temperature dependence were found below about 150 K. The magnetoresistance was found to be as large as 30% at 15 K at a magnetic field of 9 T. From the transport data we found that the transition near 155 K was accomplished in two steps: first one occurs at 155 K which may be associated with the structural transition, the second one takes place at about 140 K which may correspond to the spin-density wave like transition. In the superconducting sample with $T_c$ = 50 $ $K, it is found that the Hall coefficient also reveals a strong temperature dependence with a negative sign. But the magnetoresistance becomes very weak and does not satisfy the Kohlers scaling law. These dilemmatic results (strong Hall effect and very weak magnetoresistance) prevent to understand the normal state electric conduction by a simple multi-band model by taking account the electron and hole pockets. Detailed analysis further indicates that the strong temperature dependence of $R_H$ cannot be easily understood with the simple multi-band model either. A picture concerning a suppression to the density of states at the Fermi energy in lowering temperature is more reasonable. A comparison between the Hall coefficient of the undoped sample and the superconducting sample suggests that the doping may remove the nesting condition for the formation of the SDW order, since both samples have very similar temperature dependence above 175 K.
We use a magnetic force microscope (MFM) to investigate single vortex pinning and penetration depth in NdFeAsO$_{1-x}$F$_x$, one of the highest-$T_c$ iron-based superconductors. In fields up to 20 Gauss, we observe a disordered vortex arrangement, implying that the pinning forces are stronger than the vortex-vortex interactions. We measure the typical force to depin a single vortex, $F_{mathrm{depin}} simeq 4.5$ pN, corresponding to a critical current up to $J_c simeq 7 times 10^5$ A/cm$^2$. Furthermore, our MFM measurements allow the first local and absolute determination of the superconducting in-plane penetration depth in NdFeAsO$_{1-x}$F$_x$, $lambda_{ab}=320 pm 60$ nm, which is larger than previous bulk measurements.
F-substituted LaOBiSe2 single crystals were grown using CsCl flux. The obtained single crystals showed a plate-like shape with a size of about 1.0 mm square. The c-axis lattice constant of the grown crystals was determined to be 14.114(3) {AA}. The superconducting critical temperature of the single crystal was approximately 3.5 K. The superconducting anisotropies were determined to be 49 and 24 using the upper critical field and the effective mass model, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا