Do you want to publish a course? Click here

Complete intersection Approximation, Dual Filtrations and Applications

283   0   0.0 ( 0 )
 Added by Tony Puthenpurakal
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We give a two step method to study certain questions regarding associated graded module of a Cohen-Macaulay (CM) module $M$ w.r.t an $mathfrak{m}$-primary ideal $mathfrak{a}$ in a complete Noetherian local ring $(A,mathfrak{m})$. The first step, we call it complete intersection approximation, enables us to reduce to the case when both $A$, $ G_mathfrak{a}(A) = bigoplus_{n geq 0} mathfrak{a}^n/mathfrak{a}^{n+1} $ are complete intersections and $M$ is a maximal CM $A$-module. The second step consists of analyzing the classical filtration ${Hom_A(M,mathfrak{a}^n) }_{mathbb{Z}}$ of the dual $Hom_A(M,A)$. We give many applications of this point of view. For instance let $(A,mathfrak{m})$ be equicharacteristic and CM. Let $a(G_mathfrak{a}(A))$ be the $a$-invariant of $G_mathfrak{a}(A)$. We prove: 1. $a(G_mathfrak{a}(A)) = -dim A$ iff $mathfrak{a}$ is generated by a regular sequence. 2. If $mathfrak{a}$ is integrally closed and $a(G_mathfrak{a}(A)) = -dim A + 1$ then $mathfrak{a}$ has minimal multiplicity. We extend to modules a result of Ooishi relating symmetry of $h$-vectors. As another application we prove a conjecture of Itoh, if $A$ is a CM local ring and $mathfrak{a}$ is a normal ideal with $e_3^mathfrak{a}(A) = 0$ then $G_mathfrak{a}(A)$ is CM.

rate research

Read More

In this paper we completely characterize lattice ideals that are complete intersections or equivalently complete intersections finitely generated semigroups of $bz^noplus T$ with no invertible elements, where $T$ is a finite abelian group. We also characterize the lattice ideals that are set-theoretic complete intersections on binomials.
We characterize the graphs $G$ for which their toric ideals $I_G$ are complete intersections. In particular we prove that for a connected graph $G$ such that $I_G$ is complete intersection all of its blocks are bipartite except of at most two. We prove that toric ideals of graphs which are complete intersections are circuit ideals. The generators of the toric ideal correspond to even cycles of $G$ except of at most one generator, which corresponds to two edge disjoint odd cycles joint at a vertex or with a path. We prove that the blocks of the graph satisfy the odd cycle condition. Finally we characterize all complete intersection toric ideals of graphs which are normal.
We study the complete intersection property and the algebraic invariants (index of regularity, degree) of vanishing ideals on degenerate tori over finite fields. We establish a correspondence between vanishing ideals and toric ideals associated to numerical semigroups. This correspondence is shown to preserve the complete intersection property, and allows us to use some available algorithms to determine whether a given vanishing ideal is a complete intersection. We give formulae for the degree, and for the index of regularity of a complete intersection in terms of the Frobenius number and the generators of a numerical semigroup.
In this paper we define and explore properties of mixed multiplicities of (not necessarily Noetherian) filtrations of $m_R$-primary ideals in a Noetherian local ring $R$, generalizing the classical theory for $m_R$-primary ideals. We construct a real polynomial whose coefficients give the mixed multiplicities. This polynomial exists if and only if the dimension of the nilradical of the completion of $R$ is less than the dimension of $R$, which holds for instance if $R$ is excellent and reduced. We show that many of the classical theorems for mixed multiplicities of $m_R$-primary ideals hold for filtrations, including the famous Minkowski inequalities of Teissier, and Rees and Sharp.
The theory of mixed multiplicities of filtrations by $m$-primary ideals in a ring is introduced in a recent paper by Cutkosky, Sarkar and Srinivasan. In this paper, we consider the positivity of mixed multiplicities of filtrations. We show that the mixed multiplicities of filtrations must be nonnegative real numbers and give examples to show that they could be zero or even irrational. When $R$ is analytically irreducible, and $mathcal I(1),ldots,mathcal I(r)$ are filtrations of $R$ by $m_R$-primary ideals, we show that all of the mixed multiplicities $e_R(mathcal I(1)^{[d_1]},ldots,mathcal I(r)^{[d_r]};R)$ are positive if and only if the ordinary multiplicities $e_R(mathcal I(i);R)$ for $1le ile r$ are positive. We extend this to modules and prove a simple characterization of when the mixed multiplicities are positive or zero on a finitely generated module.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا