Do you want to publish a course? Click here

Scanning tunneling spectroscopy of SmFeAsO0.85: Possible evidence for d-wave order parameter symmetry

160   0   0.0 ( 0 )
 Added by Ofer Yuli
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a scanning tunneling spectroscopy investigation of polycrystalline SmFeAsO0.85 having a superconducting transition at 52 K. On large regions of the sample surface the tunneling spectra exhibited V-shaped gap structures with no coherence peaks, indicating degraded surface properties. In some regions, however, the coherence peaks were clearly observed, and the V-shaped gaps could be fit to the theory of tunneling into a d-wave superconductor, yielding gap values between 8 to 8.5 meV, corresponding to the ratio 2D/KTc ~ 3.55 - 3.8, which is slightly above the BCS weak-coupling prediction. In other regions the spectra exhibited zero-bias conductance peaks, consistent with a d-wave order parameter symmetry.



rate research

Read More

Motivated by recent experiments, we investigate Josephson scanning tunneling spectroscopy in an s-wave superconductor. We demonstrate that the spatial oscillations in the superconducting order parameter induced by defects can be spatially imaged through local measurements of the critical Josephson current, providing unprecedented insight into the nature of superconductivity. The spatial form of the Josephson current reflects the nature of the defects, and can be used to probe defect-induced phase transitions from an $S=0$ to an $S=1/2$ ground state.
We present extensive Scanning Tunneling Spectroscopy (STM/S) measurements at low temperatures in the multiband superconductor MgB$_2$. We find a similar behavior in single crystalline samples and in single grains, which clearly shows the partial superconducting density of states of both the $pi$ and $sigma$ bands of this material. The superconducting gaps corresponding to both bands are not single valued. Instead, we find a distribution of superconducting gaps centered around 1.9mV and 7.5mV, corresponding respectively to each set of bands. Interband scattering effects, leading to a single gap structure at 4mV and a smaller critical temperature can be observed in some locations on the surface. S-S junctions formed by pieces of MgB$_2$ attached to the tip clearly show the subharmonic gap structure associated with this type of junctions. We discuss future developments and possible new effects associated with the multiband nature of superconductivity in this compound.
We present Scanning Tunneling Spectroscopy measurements at 0.1 K using tips made of Al. At zero field, the atomic lattice and charge density wave of 2HNbSe2 are observed, and under magnetic fields the peculiar electronic surface properties of vortices are precisely resolved. The tip density of states is influenced by the local magnetic field of the vortex, providing for a new probe of the magnetic field at nanometric sizes.
We report scanning tunneling spectroscopy (STS) measurements of the gap properties of both ceramic MgB2 and c-axis oriented epitaxial MgB2 thin films. Both show a temperature dependent zero bias conductance peak and evidence for two superconducting gaps. We report tunneling spectroscopy of superconductor-insulator-superconductor (S-I-S) junctions formed in two ways in addition to normal metal-insulator-superconductor (N-I-S) junctions. We find a gap delta=2.3-2.8 meV, with spectral features and temperature dependence that are consistent between S-I-S junction types. In addition, we observe evidence of a second, larger gap, delta=7.2 meV, consistent with a proposed two-band model.
We report on spatial measurements of the superconducting proximity effect in epitaxial graphene induced by a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial multilayer graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting energy gap with increasing separation from the graphene-aluminum edges. The spectra were well described by Bardeen-Cooper-Schrieffer (BCS) theory. The decay length for the superconducting energy gap in graphene was determined to be greater than 400 nm. Deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا