Do you want to publish a course? Click here

Direct Acceleration of Ions With Variable-frequency Lasers

147   0   0.0 ( 0 )
 Added by Fabio Peano
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A method is proposed for producing monoergetic, high-quality ion beams in vacuum, via direct acceleration by the electromagnetic field of two counterpropagating, variable-frequency lasers: ions are trapped and accelerated by a beat-wave structure with variable phase velocity, allowing for fine control over the energy and the charge of the beam via tuning of the frequency variation. The physical mechanism is described with a one-dimensional theory, providing the general conditions for trapping and scaling laws for the relevant features of the ion beam. Two-dimensional, electromagnetic particle-in-cell simulations, in which hydrogen gas is considered as an ion source, confirm the validity and the robustness of the method.



rate research

Read More

A new diagnosis method for high energy ions utilizing a single CR-39 detector mounted on plastic plates is demonstrated to identify the presence of the high energy component beyond the CR-39s detection threshold limit. On irradiation of the CR-39 detector unit with a 25 MeV per nucleon He ion beam from conventional rf-accelerators, a large number of etch pits having elliptical opening shapes are observed on the rear surface of the CR-39. Detailed investigations reveal that these etch pits are created by heavy ions inelastically backscattered from the plastic plates. This ion detection method is applied to laser-driven ion acceleration experiments using cluster-gas targets, and ion signals with energies up to 50 MeV per nucleon are identified.
The acceleration of super-heavy ions (SHIs) from plasmas driven by ultrashort (tens of femtoseconds) laser pulses is a challenging topic waiting for breakthrough. The detecting and controlling of the ionization process, and the adoption of the optimal acceleration scheme are crucial for the generation of highly energetic SHIs. Here, we report the experimental results on the generation of deeply ionized super-heavy ions (Au) with unprecedented energy of 1.2 GeV utilizing ultrashort laser pulses (22 fs) at the intensity of 10^22 W/cm2. A novel self-calibrated diagnostic method was developed to acquire the absolute energy spectra and charge state distributions of Au ions abundant at the charge state of 51+ and reaching up to 61+. The measured charge state distributions supported by 2D particle-in-cell simulations serves as an additional tool to inspect the ionization dynamics associated with SHI acceleration, revealing that the laser intensity is the crucial parameter for the acceleration of Au ions over the pulse duration. The use of double-layer targets results in a prolongation of the acceleration time without sacrificing the strength of acceleration field, which is highly favorable for the generation of high-energy super heavy ions.
183 - Etele Molnar , Dan Stutman 2021
A detailed study of direct laser-driven electron acceleration in paraxial Laguerre-Gaussian modes corresponding to helical beams $text{LG}_{0m}$ with azimuthal modes $m=left{1,2,3,4,5right}$ is presented. Due to the difference between the ponderomotive force of the fundamental Gaussian beam $text{LG}_{00}$ and helical beams $text{LG}_{0m}$ we found that the optimal beam waist leading to the most energetic electrons at full width at half maximum is more than twice smaller for the latter and corresponds to a few wavelengths $Delta w_0=left{6,11,19right}lambda_0$ for laser powers of $P_0 = left{0.1,1,10right}$ PW. We also found that for azimuthal modes $mgeq 3$ the optimal waist should be smaller than $Delta w_0 < 19 lambda_0$. Using these optimal values we have observed that the average kinetic energy gain of electrons is about an order of magnitude larger in helical beams compared to the fundamental Gaussian beam. This average energy gain increases with the azimuthal index $m$ leading to collimated electrons of a few $100$ MeV energy in the direction of the laser propagation.
82 - M. Liu , S. M. Weng , H. C. Wang 2018
We propose a hybrid laser-driven ion acceleration scheme using a combination target of a solid foil and a density-tailored background plasma. In the first stage, a sub-relativistic proton beam can be generated by the radiation pressure acceleration in the intense laser interaction with the solid foil. In the second stage, this sub-relativistic proton beam is further accelerated by the laser wakefield driven by the same laser pulse in a near-critical-density background plasma with a decreasing density profile. The propagating velocity of the laser front and the phase velocity of the excited wakefield wave are effectively lowered at the beginning of the second stage. By decreasing the background plasma density gradually from near critical density along the laser propagation direction, the wake travels faster and faster while it accelerates the protons. Consequently, the dephasing between the protons and the wake is postponed, and an efficient wakefield proton acceleration is achieved. This hybrid laser-driven proton acceleration scheme can be realized by using ultrashort laser pulses at the peak power of 10 PW for the generation of multi-GeV proton beams.
77 - A. Pak , S. Kerr , N. Lemos 2018
Collisionless shock acceleration of protons and C$^{6+}$ ions has been achieved by the interaction of a 10$^{20}$ W/cm$^2$, 1 $mu$m laser with a near-critical density plasma. Ablation of the initially solid density target by a secondary laser allowed for systematic control of the plasma profile. This enabled the production of beams with peaked spectra with energies of 10-18 MeV/a.m.u. and energy spreads of 10-20$%$ with up to 3x10$^9$ particles within these narrow spectral features. The narrow energy spread and similar velocity of ion species with different charge-to-mass ratio are consistent with acceleration by the moving potential of a shock wave. Particle-in-cell simulations show shock accelerated beams of protons and C$^{6+}$ ions with energy distributions consistent with the experiments. Simulations further indicate the plasma profile determines the trade-off between the beam charge and energy and that with additional target optimization narrow energy spread beams exceeding 100 MeV/a.m.u. can be produced using the same laser conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا