No Arabic abstract
We present the first observation of an instability in an expanding ultracold plasma. We observe periodic emission of electrons from an ultracold plasma in weak, crossed magnetic and electric fields, and a strongly perturbed electron density distribution in electron time-of-flight projection images. We identify this instability as a high-frequency electron drift instability due to the coupling between the electron drift wave and electron cyclotron harmonic, which has large wavenumbers corresponding to wavelengths close to the electron gyroradius.
We demonstrate magnetic confinement of an ultracold neutral plasma (UCNP) created at the null of a biconic cusp, or quadrupole magnetic field. Initially, the UCNP expands due to electron thermal pressure. As the plasma encounters stronger fields, expansion slows and the density distribution molds to the field. UCNP electrons are strongly magnetized over most of the plasma, while ion magnetization is only significant at the boundaries. Observations suggest that electrons and ions are predominantly trapped by magnetic mirroring and ambipolar electric fields respectively. Confinement times approach 0.5 ms, while unmagnetized plasmas dissipate on a timescale of a few tens of microseconds.
The results of a theoretical investigation of an ultracold, neutral plasma composed of equal mass positive and negative charges are reported. In our simulations, the plasma is created by the fast dissociation of a neutral particle. The temperature of the plasma is controlled by the relative energy of the dissociation. We studied the early time evolution of this system where the initial energy was tuned so that the plasma is formed in the strongly coupled regime. In particular, we present results on the temperature evolution and three body recombination. In the weakly coupled regime, we studied how an expanding plasma thermalizes and how the scattering between ions affects the expansion. Because the expansion causes the density to drop, the velocity distribution only evolves for a finite time with the final distribution depending on the number of particles and initial temperature of the plasma.
The paper presents a review of dynamic stabilization mechanisms for plasma instabilities. One of the dynamic stabilization mechanisms for plasma instability was proposed in the papers [Phys. Plasmas 19, 024503(2012) and references therein], based on a perturbation phase control. In general, instabilities emerge from the perturbations of the physical quantity. Normally the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superimposition of perturbations imposed actively: if the perturbation is introduced by, for example, a driving beam axis oscillation or so, the perturbation phase can be controlled and the instability growth is mitigated by the superimposition of the growing perturbations. Based on this mechanism we present the application results of the dynamic stabilization mechanism to the Rayleigh-Taylor (R-T) instability and to the filamentation instability as typical examples in this paper. On the other hand, in the paper [Comments Plasma Phys. Controlled Fusion 3, 1(1977)] another mechanism was proposed to stabilize the R-T instability based on the strong oscillation of acceleration, which was realized by the laser intensity modulation in laser inertial fusion [Phys. Rev. Lett. 71, 3131(1993)]. In the latter mechanism, the total acceleration strongly oscillates, so that the additional oscillating force is added to create a new stable window in the system. Originally the latter mechanism was proposed by P. L. Kapitza, and it was applied to the stabilization of an inverted pendulum. In this paper we review the two dynamic stabilization mechanisms, and present the application results of the former dynamic stabilization mechanism.
The two-fluid (ions and electrons) plasma Richtmyer-Meshkov instability of a cylindrical light/heavy density interface is numerically investigated without an initial magnetic field. Varying the Debye length scale, we examine the effects of the coupling between the electron and ion fluids. When the coupling becomes strong, the electrons are restricted to co-move with the ions and the resulting evolution is similar to the hydrodynamic neutral fluid case. The charge separation that occurs between the electrons and ions results in self-generated electromagnetic fields. We show that the Biermann battery effect dominates the generation of magnetic field when the coupling between the electrons and ions is weak. In addition to the Rayleigh-Tayler stabilization effect during flow deceleration, the interfaces are accelerated by the induced spatio-temporally varying Lorentz force. As a consequence, the perturbations develop into the Rayleigh-Taylor instability, leading to an enhancement of the perturbation amplitude compared with the hydrodynamic case.
The expansion of electromagnetic post-solitons emerging from the interaction of a 30 ps, $3times 10^{18}$ W cm$^{-2}$ laser pulse with an underdense deuterium plasma has been observed up to 100 ps after the pulse propagation, when large numbers of post-solitons were seen to remain in the plasma. The temporal evolution of the post-solitons has been accurately characterized with a high spatial and temporal resolution. The observed expansion is compared to analytical models and three dimensional particle-in-cell results providing indication of the polarisation dependence of the post-soliton dynamics.