Do you want to publish a course? Click here

Light hadron spectroscopy using domain wall valence quarks on an Asqtad sea

220   0   0.0 ( 0 )
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We calculate the light hadron spectrum in full QCD using two plus one flavor Asqtad sea quarks and domain wall valence quarks. Meson and baryon masses are calculated on a lattice of spatial size $L approx 2.5$texttt{fm}, and a lattice spacing of $a approx 0.124$texttt{fm}, for pion masses as light as $m_pi approx 300$texttt{MeV}, and compared with the results by the MILC collaboration with Asqtad valence quarks at the same lattice spacing. Two- and three-flavor chiral extrapolations of the baryon masses are performed using both continuum and mixed-action heavy baryon chiral perturbation theory. Both the three-flavor and two-flavor functional forms describe our lattice results, although the low-energy constants from the next-to-leading order SU(3) fits are inconsistent with their phenomenological values. Next-to-next-to-leading order SU(2) continuum formulae provide a good fit to the data and yield and extrapolated nucleon mass consistent with experiment, but the convergence pattern indicates that even our lightest pion mass may be at the upper end of the chiral regime. Surprisingly, our nucleon masses are essentially lineaer in $m_pi$ over our full range of pion masses, and we show this feature is common to all recent dynamical calculations of the nucleon mass. The origin of this linearity is not presently understood, and lighter pion masses and increased control of systematic errors will be needed to resolve this puzzling behavior.



rate research

Read More

We compute the pion electromagnetic form factor in a hybrid calculation with domain wall valence quarks and improved staggered (asqtad) sea quarks. This method can easily be extended to rho-to-gamma-pi transition form factors.
We present high statistics results for the structure of the nucleon from a mixed-action calculation using 2+1 flavors of asqtad sea and domain wall valence fermions. We perform extrapolations of our data based on different chiral effective field theory schemes and compare our results with available information from phenomenology. We discuss vector and axial form factors of the nucleon, moments of generalized parton distributions, including moments of forward parton distributions, and implications for the decomposition of the nucleon spin.
Moments of the generalized parton distributions of the nucleon, calculated with a mixed action of domain wall valence quarks and asqtad staggered sea quarks, are presented for pion masses extending down to 359 MeV. Results for the moments of the unpolarized, helicity, and transversity distributions are given and compared to the available experimental measurements. Additionally, a selection of the generalized form factors are shown and the implications for the spin decomposition and transverse structure of the nucleon are discussed. Particular emphasis is placed on understanding systematic errors in the lattice calculation and exploring a variety of chiral extrapolations.
With the advent of chiral fermion formulations, the simulation of light valence quarks has finally become realistic for numerical simulations of lattice QCD. The simulation of light dynamical quarks, however, remains one of the major challenges and is still an obstacle to realistic simulations. We attempt to meet this challenge using a hybrid combination of Asqtad sea quarks and domain-wall valence quarks. Initial results for the proton form factor and the nucleon axial coupling are presented.
In order to advance lattice calculations of moments of unpolarized, helicity, and transversity distributions, electromagnetic form factors, and generalized form factors of the nucleon to a new level of precision, this work investigates several key aspects of precision lattice calculations. We calculate the number of configurations required for constant statistical errors as a function of pion mass, describe the coherent sink method to help achieve these statistics, examine the statistical correlations between separate measurements, study correlations in the behavior of form factors at different momentum transfer, examine volume dependence, and compare mixed action results with those using comparable dynamical domain wall configurations. We also show selected form factor results and comment on the QCD evolution of our calculations of the flavor non-singlet nucleon angular momentum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا