Do you want to publish a course? Click here

White Dwarfs in Globular Clusters

116   0   0.0 ( 0 )
 Added by Sabine Moehler
 Publication date 2011
  fields Physics
and research's language is English
 Authors S. Moehler




Ask ChatGPT about the research

We review empirical and theoretical findings concerning white dwarfs in Galactic globular clusters. Since their detection is a critical issue we describe in detail the various efforts to find white dwarfs in globular clusters. We then outline the advantages of using cluster white dwarfs to investigate the formation and evolution of white dwarfs and concentrate on evolutionary channels that appear to be unique to globular clusters. We also discuss the usefulness of globular cluster white dwarfs to provide independent information on the distances and ages of globular clusters, information that is very important far beyond the immediate field of white dwarf research. Finally, we mention possible future avenues concerning globular cluster white dwarfs, like the study of strange quark matter or plasma neutrinos.



rate research

Read More

203 - Harvey B. Richer 1997
Using WFPC2 on the Hubble Space Telescope, we have isolated a sample of 258 white dwarfs (WDs) in the Galactic globular cluster M4. Fields at three radial distances from the cluster center were observed and sizeable WD populations were found in all three. The location of these WDs in the color-magnitude diagram, their mean mass of 0.51($ pm 0.03$)M$_{odot}$, and their luminosity function confirm basic tenets of stellar evolution theory and support the results from current WD cooling theory. The WDs are used to extend the cluster main-sequence mass function upward to stars that have already completed their nuclear evolution. The WD/red dwarf binary frequency in M4 is investigated and found to be at most a few percent of all the main-sequence stars. The most ancient WDs found are about 9 Gyr old, a level which is set solely by the photometric limits of our data. Even though this is less than the age of M4, we discuss how these cooling WDs can eventually be used to check the turnoff ages of globular clusters and hence constrain the age of the Universe.
We consider the formation of double white dwarfs (DWDs) through dynamical interactions in globular clusters. Such interactions can give rise to eccentric DWDs, in contrast to the exclusively circular population expected to form in the Galactic disk. We show that for a 5-year Laser Interferometer Space Antenna (LISA) mission and distances as far as the Large Magellanic Cloud, multiple harmonics from eccentric DWDs can be detected at a signal-to-noise ratio higher than 8 for at least a handful of eccentric DWDs, given their formation rate and typical lifetimes estimated from current cluster simulations. Consequently the association of eccentricity with stellar-mass LISA sources does not uniquely involve neutron stars, as is usually assumed. Due to the difficulty of detecting (eccentric) DWDs with present and planned electromagnetic observatories, LISA could provide unique dynamical identifications of these systems in globular clusters.
We have carried out a search for massive white dwarfs (WDs) in the direction of young open star clusters using the Gaia DR2 database. The aim of this survey was to provide robust data for new and previously known high-mass WDs regarding cluster membership, to highlight WDs previously included in the Initial Final Mass Relation (IFMR) that are unlikely members of their respective clusters according to Gaia astrometry and to select an unequivocal WD sample that could then be compared with the host clusters turnoff masses. All promising WD candidates in each cluster CMD were followed up with spectroscopy from Gemini in order to determine whether they were indeed WDs and derive their masses, temperatures and ages. In order to be considered cluster members, white dwarfs were required to have proper motions and parallaxes within 2, 3, or 4-$sigma$ of that of their potential parent cluster based on how contaminated the field was in their region of the sky, have a cooling age that was less than the cluster age and a mass that was broadly consistent with the IFMR. A number of WDs included in curre
Numerical and observational evidence suggests that massive white dwarfs dominate the innermost regions of core-collapsed globular clusters by both number and total mass. Using NGC 6397 as a test case, we constrain the features of white dwarf populations in core-collapsed clusters, both at present day and throughout their lifetimes. The dynamics of these white dwarf subsystems have a number of astrophysical implications. We demonstrate that the collapse of globular cluster cores is ultimately halted by the dynamical burning of white dwarf binaries. We predict core-collapsed clusters in the local universe yield a white dwarf merger rate of $mathcal{O}(10rm{),Gpc}^{-3},rm{yr}^{-1}$, roughly $0.1-1%$ of the observed Type Ia supernova rate. We show that prior to merger, inspiraling white dwarf binaries will be observable as gravitational wave sources at milli- and decihertz frequencies. Over $90%$ of these mergers have a total mass greater than the Chandrasekhar limit. If the merger/collision remnants are not destroyed completely in an explosive transient, we argue the remnants may be observed in core-collapsed clusters as either young neutron stars/pulsars/magnetars (in the event of accretion-induced collapse) or as young massive white dwarfs offset from the standard white dwarf cooling sequence. Finally, we show collisions between white dwarfs and main sequence stars, which may be detectable as bright transients, occur at a rate of $mathcal{O}(100rm{),Gpc}^{-3},rm{yr}^{-1}$ in the local universe. We find that these collisions lead to depletion of blue straggler stars and main sequence star binaries in the centers of core-collapsed clusters.
We present results of a study of the central regions of NGC 6397 using Hubble Space Telescopes Advanced Camera for Surveys, focusing on a group of 24 faint blue stars that form a sequence parallel to, but brighter than, the more populated sequence of carbon-oxygen white dwarfs (CO WDs). Using F625W, F435W, and F658N filters with the Wide Field Channel we show that these stars, 18 of which are newly discovered, have magnitudes and colors consistent with those of helium-core white dwarfs (He WDs) with masses ~ 0.2-0.3 Msun. Their H-alpha--R625 colors indicate that they have strong H-alpha absorption lines, which distinguishes them from cataclysmic variables in the cluster. The radial distribution of the He WDs is significantly more concentrated to the cluster center than that of either the CO WDs or the turnoff stars and most closely resembles that of the clusters blue stragglers. Binary companions are required to explain the implied dynamical masses. We show that the companions cannot be main-sequence stars and are most likely heavy CO WDs. The number and photometric masses of the observed He WDs can be understood if ~1-5% of the main-sequence stars within the half-mass radius of the cluster have white dwarf companions with orbital periods in the range ~1-20 days at the time they reach the turnoff. In contrast to the CO WD sequence, the He WD sequence comes to an end at R625 ~ 24.5, well above the magnitude limit of the observations. We explore the significance of this finding in the context of thick vs. thin hydrogen envelope models and compare our results to existing theoretical predictions. In addition, we find strong evidence that the vast majority of the CO WDs in NGC 6397 down to Teff ~ 10,000 K are of the DA class. Finally, we use the CO WD sequence to measure a distance to the cluster of 2.34 +- 0.13 kpc.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا