No Arabic abstract
Numerical and observational evidence suggests that massive white dwarfs dominate the innermost regions of core-collapsed globular clusters by both number and total mass. Using NGC 6397 as a test case, we constrain the features of white dwarf populations in core-collapsed clusters, both at present day and throughout their lifetimes. The dynamics of these white dwarf subsystems have a number of astrophysical implications. We demonstrate that the collapse of globular cluster cores is ultimately halted by the dynamical burning of white dwarf binaries. We predict core-collapsed clusters in the local universe yield a white dwarf merger rate of $mathcal{O}(10rm{),Gpc}^{-3},rm{yr}^{-1}$, roughly $0.1-1%$ of the observed Type Ia supernova rate. We show that prior to merger, inspiraling white dwarf binaries will be observable as gravitational wave sources at milli- and decihertz frequencies. Over $90%$ of these mergers have a total mass greater than the Chandrasekhar limit. If the merger/collision remnants are not destroyed completely in an explosive transient, we argue the remnants may be observed in core-collapsed clusters as either young neutron stars/pulsars/magnetars (in the event of accretion-induced collapse) or as young massive white dwarfs offset from the standard white dwarf cooling sequence. Finally, we show collisions between white dwarfs and main sequence stars, which may be detectable as bright transients, occur at a rate of $mathcal{O}(100rm{),Gpc}^{-3},rm{yr}^{-1}$ in the local universe. We find that these collisions lead to depletion of blue straggler stars and main sequence star binaries in the centers of core-collapsed clusters.
Dynamical evolution drives globular clusters toward core collapse, which strongly shapes their internal properties. Diagnostics of core collapse have so far been based on photometry only, namely on the study of the concentration of the density profiles. Here we present a new method to robustly identify core-collapsed clusters based on the study of their stellar kinematics. We introduce the textit{kinematic concentration} parameter, $c_k$, the ratio between the global and local degree of energy equipartition reached by a cluster, and show through extensive direct $N$-body simulations that clusters approaching core collapse and in the post-core collapse phase are strictly characterized by $c_k>1$. The kinematic concentration provides a suitable diagnostic to identify core-collapsed clusters, independent from any other previous methods based on photometry. We also explore the effects of incomplete radial and stellar mass coverage on the calculation of $c_k$ and find that our method can be applied to state-of-art kinematic datasets.
We study the dynamical evolution of globular clusters using our Henon-type Monte Carlo code for stellar dynamics including all relevant physics such as two-body relaxation, single and binary stellar evolution, Galactic tidal stripping, and strong interactions such as physical collisions and binary mediated scattering. We compute a large database of several hundred models starting from broad ranges of initial conditions guided by observations of young and massive star clusters. We show that these initial conditions very naturally lead to present day clusters with properties including the central density, core radius, half-light radius, half-mass relaxation time, and cluster mass, that match well with those of the old Galactic globular clusters. In particular, we can naturally reproduce the bimodal distribution in observed core radii separating the core-collapsed vs the non core-collapsed clusters. We see that the core-collapsed clusters are those that have reached or are about to reach the equilibrium binary burning phase. The non core-collapsed clusters are still undergoing gravo-thermal contraction.
Recent observations of the white dwarf (WD) populations in the Galactic globular cluster NGC 6397 suggest that WDs receive a kick of a few km/s shortly before they are born. Using our Monte Carlo cluster evolution code, which includes accurate treatments of all relevant physical processes operating in globular clusters, we study the effects of the kicks on their host cluster and on the WD population itself. We find that in clusters whose velocity dispersion is comparable to the kick speed, WD kicks are a significant energy source for the cluster, prolonging the initial cluster core contraction phase significantly so that at late times the cluster core to half-mass radius ratio is a factor of up to ~ 10 larger than in the no-kick case. WD kicks thus represent a possible resolution of the large discrepancy between observed and theoretically predicted values of this key structural parameter. Our modeling also reproduces the observed trend for younger WDs to be more extended in their radial distribution in the cluster than older WDs.
We present results of a study of the central regions of NGC 6397 using Hubble Space Telescopes Advanced Camera for Surveys, focusing on a group of 24 faint blue stars that form a sequence parallel to, but brighter than, the more populated sequence of carbon-oxygen white dwarfs (CO WDs). Using F625W, F435W, and F658N filters with the Wide Field Channel we show that these stars, 18 of which are newly discovered, have magnitudes and colors consistent with those of helium-core white dwarfs (He WDs) with masses ~ 0.2-0.3 Msun. Their H-alpha--R625 colors indicate that they have strong H-alpha absorption lines, which distinguishes them from cataclysmic variables in the cluster. The radial distribution of the He WDs is significantly more concentrated to the cluster center than that of either the CO WDs or the turnoff stars and most closely resembles that of the clusters blue stragglers. Binary companions are required to explain the implied dynamical masses. We show that the companions cannot be main-sequence stars and are most likely heavy CO WDs. The number and photometric masses of the observed He WDs can be understood if ~1-5% of the main-sequence stars within the half-mass radius of the cluster have white dwarf companions with orbital periods in the range ~1-20 days at the time they reach the turnoff. In contrast to the CO WD sequence, the He WD sequence comes to an end at R625 ~ 24.5, well above the magnitude limit of the observations. We explore the significance of this finding in the context of thick vs. thin hydrogen envelope models and compare our results to existing theoretical predictions. In addition, we find strong evidence that the vast majority of the CO WDs in NGC 6397 down to Teff ~ 10,000 K are of the DA class. Finally, we use the CO WD sequence to measure a distance to the cluster of 2.34 +- 0.13 kpc.
We analyze in detail various possible sources of systematic errors on the distances of globular clusters derived by fitting a local template DA white dwarf sequence to the cluster counterpart (the so-called WD-fitting technique). We find that the unknown thickness of the hydrogen layer of white dwarfs in clusters plays a non negligible role. For reasonable assumptions - supported by the few sparse available observational constraints - about the unknown mass and thickness of the hydrogen layer for the cluster white dwarfs, a realistic estimate of the systematic error on the distance is within +-0.10 mag. However, particular combinations of white dwarf masses and envelope thicknesses - which at present cannot be excluded a priori - could produce larger errors. Contamination of the cluster DA sequence by non-DA white dwarfs introduces a very small systematic error of about -0.03 mag in the Mv/(V-I) plane, but in the Mv/(B-V) plane the systematic error amounts to ~ +0.20 mag. Contamination by white dwarfs with helium cores should not influence appreciably the WD-fitting distances. Finally, we obtain a derivative D((m-M)v)/D(E(B-V))~ -5.5 for the WD-fitting distances, which is very similar to the dependence found when using the Main Sequence fitting technique.