No Arabic abstract
In this paper we show how to bypass the usual difficulties in the analysis of elliptic integrals that arise when solving period problems for minimal surfaces. The method consists of replacing period problems with ordinary Sturm-Liouville problems involving the support function. We give a practical application by proving existence of the sheared Scherk-Karcher family of surfaces numerically described by Wei. Moreover, we show that this family is continuous, and both of its limit-members are the singly periodic genus-one helicoid.
We introduce a new technique to solve period problems on minimal surfaces called limit-method. If a family of surfaces has Weierstrass-data converging to the data of a known example, and this presents a transversal solution of periods, then the original family contains a sub-family with closed periods.
In this paper we establish a connection between free boundary minimal surfaces in a ball in $mathbb{R}^3$ and free boundary cones arising in a one-phase problem. We prove that a doubly connected minimal surface with free boundary in a ball is a catenoid.
In this article we present an elementary introduction to the theory of minimal surfaces in Euclidean spaces $mathbb R^n$ for $nge 3$ by using only elementary calculus of functions of several variables at the level of a typical second-year undergraduate analysis course for students of Mathematics at European universities. No prior knowledge of differential geometry is assumed.
Let $a: Ito mathbb{R}^3 $ be a real analytic curve satisfying some conditions. In this article, we show that for any real analytic curve $l:Ito mathbb R^3$ close to $a$ (in a sense which is precisely defined in the paper) there exists a translation of $l$, and a minimal surface which contains both $ a $ and the translated $l$.