Do you want to publish a course? Click here

The nuclear radio structure of X-ray bright AGN

83   0   0.0 ( 0 )
 Added by Jens Zuther
 Publication date 2008
  fields Physics
and research's language is English
 Authors Jens Zuther




Ask ChatGPT about the research

The physical nature of the X-ray/radio correlation of AGN is still an unsolved question. High angular resolution observations are necessary to disentangle the associated energy dynamics into nuclear and stellar components. We present MERLIN/EVN 18cm observations of 13 X-raying AGN. The sample consists of Seyfert 1, Narrow Line Seyfert 1, and LINER-like galaxies. We find that for all objects the radio emission is unresolved and that the radio luminosities and brightness temperatures are too high for star formation to play an important role. This indicates that the radio emission in these sources is closely connected to processes that occur in the vicinity of the central massive black hole, also where the X-ray emission is believed to originate in.



rate research

Read More

Radio and X-ray emission of AGN appears to be correlated. The details of the underlying physical processes, however, are still not fully understood, i.e., to what extent is the X-ray and radio emission originating from the same relativistic particles or from the accretion-disk or corona or both. We study the cm radio emission of an SDSS/ROSAT/FIRST matched sample of 13 X-raying AGN in the redshift range 0.11< z < 0.37 at high angular resolution with the goal of searching for jet structures or diffuse, extended emission on sub-kpc scales. We use MERLIN at 18 cm for all objects and Western EVN at 18 cm for four objects to study the radio emission on scales of ~500 pc and ~40 pc for the MERLIN and EVN observations, respectively. The detected emission is dominated by compact nuclear radio structures. We find no kpc collimated jet structures. The EVN data indicate for compact nuclei on 40 pc scales, with brightness temperatures typical for accretion-disk scenarios. Comparison with FIRST shows that the 18 cm emission is resolved out up to 50% by MERLIN. Star-formation rates based on large aperture SDSS spectra are generally too small to produce considerable contamination of the nuclear radio emission. We can, therefore, assume the 18 cm flux densities to be produced in the nuclei of the AGN. Together with the ROSAT soft X-ray luminosities and black hole mass estimates from the literature, our sample objects follow closely the Merloni et al. (2003) fundamental plane relation, which appears to trace the accretion processes. Detailed X-ray spectral modeling from deeper hard X-ray observations and higher angular resolution at radio wavelengths are required to further proceed in the disentangling of jet and accretion related processes.
144 - M. A. Sobolewska 2012
We present results from a study of a nuclear emission of a nearby radio galaxy, 4C+29.30, over a broad 0.5-200 keV X-ray band. This study used new XMM-Newton (~17 ksec) and Chandra (~300 ksec) data, and archival Swift/BAT data from the 58-month catalog. The hard (>2 keV) X-ray spectrum of 4C+29.30 can be decomposed into an intrinsic hard power-law (Gamma ~ 1.56) modified by a cold absorber with an intrinsic column density N_{H,z} ~ 5x10^{23} cm^{-2}, and its reflection (|Omega/2pi| ~ 0.3) from a neutral matter including a narrow iron Kalpha emission line at the rest frame energy ~6.4 keV. The reflected component is less absorbed than the intrinsic one with an upper limit on the absorbing column of N^{refl}_{H,z} < 2.5x10^{22} cm^{-2}. The X-ray spectrum varied between the XMM-Newton and Chandra observations. We show that a scenario invoking variations of the normalization of the power-law is favored over a model with variable intrinsic column density. X-rays in the 0.5-2 keV band are dominated by diffuse emission modeled with a thermal bremsstrahlung component with temperature ~0.7 keV, and contain only a marginal contribution from the scattered power-law component. We hypothesize that 4C+29.30 belongs to a class of `hidden AGN containing a geometrically thick torus. However, unlike the majority of them, 4C+29.30 is radio-loud. Correlations between the scattering fraction and Eddington luminosity ratio, and the one between black hole mass and stellar velocity dispersion, imply that 4C+29.30 hosts a black hole with ~10^8 M_{Sun} mass.
We have analyzed the NVSS and SUMSS data at 1.4 GHz and 843 MHz for a well defined complete sample of hard X-ray AGN observed by INTEGRAL. A large number (70/79) of sources are detected in the radio band, showing a wide range of radio morphologies, from unresolved or slightly resolved cores to extended emission over several hundreds of kpc scales. The radio fluxes have been correlated with the 2-10 keV and 20-100 keV emission, revealing significant correlations with slopes consistent with those expected for radiatively efficient accreting systems. The high energy emission coming from the inner accretion regions correlates with the radio emission averaged over hundreds of kpc scales (i.e., thousands of years).
We investigate the optical morphologies of candidate active galaxies identified at radio, X-ray, and mid-infrared wavelengths. We use the Advanced Camera for Surveys General Catalog (ACS-GC) to identify 372, 1360, and 1238 AGN host galaxies from the VLA, XMM-Newton and Spitzer Space Telescope observations of the COSMOS field, respectively. We investigate both quantitative (GALFIT) and qualitative (visual) morphologies of these AGN host galaxies, split by brightness in their selection band. We find that the radio-selected AGN are most distinct, with a very low incidence of having unresolved optical morphologies and a high incidence of being hosted by early-type galaxies. In comparison to X-ray selected AGN, mid-IR selected AGN have a slightly higher incidence of being hosted by disk galaxies. These morphological results conform with the results of Hickox et al. 2009 who studied the colors and large-scale clustering of AGN, and found a general association of radio-selected AGN with ``red sequence galaxies, mid-IR selected AGN with ``blue cloud galaxies, and X-ray selected AGN straddling these samples in the ``green valley. In the general scenario where AGN activity marks and regulates the transition from late-type disk galaxies into massive elliptical galaxies, this work suggests that the earlier stages are most evident as mid-IR selected AGNs. Mid-IR emission is less susceptible to absorption than the relatively soft X-rays probed by XMM-Newton, which are seen at later stages in the transition. Radio-selected AGN are then typically associated with minor bursts of activity in the most massive galaxies.
The Galactic black hole transient GRS1915+105 is famous for its markedly variable X-ray and radio behaviour, and for being the archetypal galactic source of relativistic jets. It entered an X-ray outburst in 1992 and has been active ever since. Since 2018 GRS1915+105 has declined into an extended low-flux X-ray plateau, occasionally interrupted by multi-wavelength flares. Here we report the radio and X-ray properties of GRS1915+105 collected in this new phase, and compare the recent data to historic observations. We find that while the X-ray emission remained unprecedentedly low for most of the time following the decline in 2018, the radio emission shows a clear mode change half way through the extended X-ray plateau in 2019 June: from low flux (~3mJy) and limited variability, to marked flaring with fluxes two orders of magnitude larger. GRS1915+105 appears to have entered a low-luminosity canonical hard state, and then transitioned to an unusual accretion phase, characterised by heavy X-ray absorption/obscuration. Hence, we argue that a local absorber hides from the observer the accretion processes feeding the variable jet responsible for the radio flaring. The radio-X-ray correlation suggests that the current low X-ray flux state may be a signature of a super-Eddington state akin to the X-ray binaries SS433 or V404 Cyg.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا